Skip to main content
Log in

The Effects of Environmental Water and Oxygen on the Temperature-Dependent Friction of Sputtered Molybdenum Disulfide

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) is well known for exceptional friction and wear properties in inert and high vacuum environments. However, these tribological properties degrade in humid and high temperature environments for reasons that are not fully understood. A prevailing hypothesis suggests that moisture and thermal energy facilitate oxidation, which increases the shear strength of the sliding interface. The purpose of this study is to elucidate the contributions of water, oxygen, and temperature to the tribological degradation of MoS2. Generally speaking, we found a minimum friction coefficient that occurred at a temperature we defined as the transition temperature. This transition temperature ranged from 100 to 250 °C and was a strong function of the MoS2 preparation and thermal sliding history. Below the transition temperature, friction increased with increased water, but was insensitive to oxygen. Above the transition, friction increased with increased oxygen, but decreased to a limited extent with increased water. These results are generally consistent with prior results, but clarify some inconsistencies in the literature discussions. Contrary to the prevailing hypothesis, the results suggest that water does not promote oxidation near room temperature, but directly interferes with lamellar shear through physical bonding. Increased temperatures drive off water and thereby reduce friction up to the transition temperature. The results suggest that oxidation causes increased friction with increased temperature above the transition temperature. The data also suggest that water helps mitigate high temperature oxidation by displacing the environmental oxygen or by preferentially adsorbing to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lansdown, A.R.: Molybdenum Disulphide Lubrication, 1st ed. Tribology Series, 35. Elsevier, Amsterdam (1999)

    Google Scholar 

  2. Donnet, C., Martin, J.M., LeMogne, T., Belin, M.: Super-low friction of MoS2 coatings in various environments. Tribol. Int. 29(2), 123–128 (1996)

    Article  CAS  Google Scholar 

  3. Sliney, H.E.: High-temperature solid lubricants. 1. Layer lattice compounds and graphite. Mech. Eng. 96(2), 18–22 (1974)

    CAS  Google Scholar 

  4. Fusaro, R.L.: Lubrication and Failure Mechanism of Molybdenum Disulfide Films. I. Effect of Atmosphere. NASA, Cleveland, OH (1978)

    Google Scholar 

  5. Stewart, T.B., Fleischauer, P.D.: Chemistry of sputtered molybdenum-disulfide films. Inorg. Chem. 21(6), 2426–2431 (1982)

    Article  CAS  Google Scholar 

  6. Dudder, G., Zhao, X., Krick, B., Sawyer, W.G., Perry, S.: Environmental effects on the tribology and microstructure of MoS2–Sb2O3–C films. Tribol. Lett. 42(2), 203–213 (2011)

    Article  CAS  Google Scholar 

  7. Zhao, X.Y., Perry, S.S.: The role of water in modifying friction within MoS(2) sliding interfaces. ACS Appl. Mater. Interfaces 2(5), 1444–1448 (2010)

    Article  CAS  Google Scholar 

  8. Midgley, J.W.: The frictional properties of molybdenum disulfide. J. Inst. Petroleum 42, 312–315 (1956)

    Google Scholar 

  9. Pritchard, C., Midgley, J.W.: The effect of humidity on the friction and life of unbonded molybdenum disulphide films. Wear 13(1), 39–50 (1969)

    Article  CAS  Google Scholar 

  10. Gao, C., Bredell, L., Kuhlmannwilsdorf, D., Makel, D.D.: Micromechanics of Mos2 lubrication. Wear 162, 480–491 (1993)

    Article  Google Scholar 

  11. Holinski, R., Gänsheimer, J.: A study of the lubricating mechanism of molybdenum disulfide. Wear 19(3), 329–342 (1972)

    Article  CAS  Google Scholar 

  12. Johnston, R.R., Moore, A.J.W.: Water adsorption on molybdenum disulfide containing surface contaminants. J. Phys. Chem. 68(11), 3399–3406 (1964)

    Article  CAS  Google Scholar 

  13. Uemura, M., Saito, K., Nakao, K.: A mechanism of vapor effect on friction coefficient of molybdenum-disulfide. Tribol. Trans. 33(4), 551–556 (1990)

    Article  CAS  Google Scholar 

  14. Degee, A.W.J., Salomon, G., Zaat, J.H.: On mechanisms of Mos2-film failure in sliding friction. ASLE Trans. 8(2), 156–163 (1965)

    Article  CAS  Google Scholar 

  15. Fleischauer, P.D., Lince, J.R.: A comparison of oxidation and oxygen substitution in MoS2 solid film lubricants. Tribol. Int. 32(11), 627–636 (1999)

    Article  CAS  Google Scholar 

  16. Haltner, A.J., Oliver, C.S.: Effect of water vapor on friction of molybdenum disulfide. Ind. Eng. Chem. Fundam. 5(3), 348–355 (1966)

    Article  CAS  Google Scholar 

  17. Panitz, J.K.G., Pope, L.E., Lyons, J.E., Staley, D.J.: The tribological properties of Mos2 coatings in vacuum, low relative-humidity, and high relative-humidity environments. J. Vac. Sci. Technol. A Vac. Surf. Films 6(3), 1166–1170 (1988)

    Article  CAS  Google Scholar 

  18. Pardee, R.P.: Effect of humidity on low-load frictional properties of a bonded solid film lubricant. ASLE Trans. 15(2), 130–142 (1972)

    Article  CAS  Google Scholar 

  19. Salomon, G., De Gee, A.W.J., Zaat, J.H.: Mechano-chemical factors in MoS2-film lubrication. Wear 7(1), 87–101 (1964)

    Article  Google Scholar 

  20. Cannon, P., Norton, F.J.: Reaction between molybdenum disulphide and water. Nature 203(494), 750–751 (1964)

    Article  CAS  Google Scholar 

  21. Fleischauer, P.D.: Effects of crystallite orientation on environmental stability and lubrication properties of sputtered MoS2 thin-films. ASLE Trans. 27(1), 82–88 (1984)

    Article  CAS  Google Scholar 

  22. Ross, S., Sussman, A.: Surface oxidation of molybdenum disulfide. J. Phys. Chem. 59(9), 889–892 (1955)

    Article  CAS  Google Scholar 

  23. Kingsbury, E.P.: Solid film lubrication at high temperature. ASLE Trans. 1(1), 121–123 (1958)

    Article  CAS  Google Scholar 

  24. Kubart, T., Polcar, T., Kopecky, L., Novak, R., Novakova, D.: Temperature dependence of tribological properties of MoS(2) and MoSe(2) coatings. Surf. Coat. Technol. 193(1–3), 230–233 (2005)

    Article  CAS  Google Scholar 

  25. Godfrey, D., Nelson, E.C.: Oxidation characteristics of molybdenum disulfide and effect of such oxidation on its role as a solid film lubricant. NACA TN No. 1882 (1949)

  26. Sliney, H.E.: Solid lubricant materials for high-temperatures—a review. Tribol. Int. 15(5), 303–315 (1982)

    Article  CAS  Google Scholar 

  27. Muratore, C., Bultman, J.E., Aouadi, S.M., Voevodin, A.A.: In situ Raman spectroscopy for examination of high temperature tribological processes. Wear 270(3–4), 140–145 (2011)

    Article  CAS  Google Scholar 

  28. Windom, B.C., Sawyer, W.G., Hahn, D.W.: A Raman spectroscopic study of MoS(2) and MoO(3): applications to tribological systems. Tribol. Lett. 42(3), 301–310 (2011)

    Article  CAS  Google Scholar 

  29. Lancaster, J.K.: A review of the influence of environmental humidity and water on friction, lubrication and wear. Tribol. Int. 23(6), 371–389 (1990)

    Article  CAS  Google Scholar 

  30. Deacon, R.F., Goodman, J.F.: Lubrication by lamellar solids. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 243(1235), 464–482 (1958)

    Article  Google Scholar 

  31. Burris, D.L., Sawyer, W.G.: Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35(1), 17–23 (2009)

    Article  Google Scholar 

  32. Chromik, R.R., Baker, C.C., Voevodin, A.A., Wahl, K.J.: In situ tribometry of solid lubricant nanocomposite coatings. Wear 262(9–10), 1239–1252 (2007)

    Article  CAS  Google Scholar 

  33. Pierce, D.E., Burns, R.P.: Evaluation of Solid Lubricants: The Chemistry of Sputtered MoS(x) Films Using Combined Thin Film Analysis Techniques. US Army Materials Technology Lab, Watertown, MA (1990)

    Google Scholar 

  34. Burris, D.L., Santos, K., Lewis, S.L., Liu, X., Perry, S.S., Blanchet, T., Schadler, L., Sawyer, W.G.: Polytetrafluoroethylene matrix nanocomposites for tribological applications. In: Friedrich, K. (ed.) Tribology of Polymeric Nanocomposites. Elsevier Science (2008)

Download references

Acknowledgments

The authors gratefully acknowledge the AFOSR (YIP FA9550-10-1–0295) and the University of Delaware Graduate Fellowship for financial support of this work. We would also like to thank Prof. Joshua Hertz (UD) and Dr. Andy Korenyi-Both (Tribologix) for discussions of the sputtering process and resulting structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Burris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khare, H.S., Burris, D.L. The Effects of Environmental Water and Oxygen on the Temperature-Dependent Friction of Sputtered Molybdenum Disulfide. Tribol Lett 52, 485–493 (2013). https://doi.org/10.1007/s11249-013-0233-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0233-8

Keywords

Navigation