Skip to main content
Log in

Analytical Models for Atomic Friction

  • Methods Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this methods article, we describe application of Prandtl–Tomlinson models and their extensions to interpret dry atomic-scale friction. The goal is to provide a practical overview of how to use these models to study frictional phenomena. We begin with the fundamental equations and build on them step-by-step—from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. The intention is to bridge the gap between theoretical analysis, numerical implementation, and predicted physical phenomena. In the process, we provide an introductory manual with example computer programs for newcomers to the field, and an illustration of the significant potential for this approach to yield new fundamental understanding of atomic-scale friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

a :

Substrate lattice spacing

b :

Tip lattice spacing

C eff :

Effective stiffness (cantilever, tip, and contact)

d :

Superstructure periodicity

f :

Actuation frequency

f 0 :

Attempt frequency

f nt :

Frequency of the tip apex mode (nanocontact)

f PT :

Frequency of the one effective mode of the PT model

F :

Friction force

F c :

Maximum friction at zero temperature

F n :

Normal force

F ts :

Interaction force in the normal direction

k :

System stiffness (cantilever and tip)

k t :

Stiffness of spring connecting neighboring tip atoms

k n :

Normal stiffness

m :

Mass of tip

N :

Number of atoms

p :

Probability of a transition

t :

Time

t v :

Average time for the tip to traverse one lattice spacing

T :

Temperature

U :

Corrugation potential amplitude

U c :

Corrugation potential

v :

Sliding speed of support

v c :

Critical speed

V :

Total potential energy

x :

Displacement of the tip in the sliding direction

x t :

Transition point

x sp :

Displacement of the support

y :

Displacement of the tip perpendicular to applied sliding direction

z :

Displacement of the tip in the normal direction

α:

Parameter that reflects the resonance of normal mode actuation

αa :

Magnitude of amplitude modulation

αc :

Magnitude of centerline modulation

β:

Curvature of the corrugation potential

γ:

Parameter that reflects the resonance of torsional mode actuation

η:

Stick-slip regime transition parameter

κ:

Transition rate

μ:

Viscous friction (damping) coefficient

ξ:

Thermal activation force

τ:

Average time to hop out from a potential well due to thermal activation

ω:

Angular frequency

References

  1. Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D Appl. Phys. 41, 123001 (2008)

    Article  Google Scholar 

  2. Prandtl, L.: Hypothetical model for the kinetic theory of solid bodies. Z. Angew. Math. Mech. 8, 85–106 (1928)

    Article  Google Scholar 

  3. Tomlinson, G.: A molecular theory of friction. Philos. Mag. 7, 905 (1929)

    CAS  Google Scholar 

  4. Gnecco, E., Bennewitz, R., Loppacher, C., Bammerlin, M., Meyer, E., Guntherodt, H.-J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172 (2000)

    Article  CAS  Google Scholar 

  5. Kontorova, T., Frenkel, Yu.I.: On the theory of plastic deformation. Zh. Exp. Teor. Fiz. 8, 1340–1344 (1938)

    Google Scholar 

  6. Weiss, M., Elmer, F.: Dry friction in the Frenkel–Kontorova–Tomlinson model: static properties. Phys. Rev. B 53, 7539 (1996)

    Article  CAS  Google Scholar 

  7. Sang, Y., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)

    Article  CAS  Google Scholar 

  8. Fusco, C., Fasolino, A.: Velocity dependence of atomic-scale friction: a comparative study of the one- and two-dimensional Tomlinson model. Phys. Rev. B 71, 045413 (2005)

    Article  Google Scholar 

  9. Igarashi, M., Natori, A., Nakamura, J.: Size effects in friction of multiatomic sliding contacts. Phys. Rev. B 78, 165427 (2008)

    Article  Google Scholar 

  10. Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Maier, S., Glatzel, T., Meyer, E.: Two-dimensional simulation of superlubricity on NaCl and highly oriented pyrolytic graphite. Phys. Rev. B 79, 045414 (2009)

    Article  Google Scholar 

  11. Krylov, S.Y., Frenken, J.W.M.: Thermal contact delocalization in atomic scale friction: a multitude of friction regimes. New J. Phys. 9, 398 (2007)

    Article  Google Scholar 

  12. Furlong, O., Manzi, S., Pereyra, V., Bustos, V., Tysoe, W.T.: Kinetic Monte Carlo theory of sliding friction. Phys. Rev. B 80, 153408 (2009)

    Article  Google Scholar 

  13. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987)

    Google Scholar 

  14. Ermak, D., Buckholz, H.: Numerical integration of the Langevin equation: Monte Carlo simulation. J. Comp. Phys. 35, 169 (1980)

    Article  Google Scholar 

  15. Nakamura, J., Wakunami, S., Natori, A.: Double-slip mechanism in atomic-scale friction: Tomlinson model at finite temperatures. Phys. Rev. B 72, 235415 (2005)

    Article  Google Scholar 

  16. Iizuka, H., Nakamura, J., Natori, A.: Control mechanism of friction by dynamic actuation of nanometer-sized contacts. Phys. Rev. B 80, 155449 (2009)

    Article  Google Scholar 

  17. Brańka, A., Heyes, D.: Algorithms for Brownian dynamics simulation. Phys. Rev. E 58, 2611–2615 (1998)

    Article  Google Scholar 

  18. Honeycutt, R.: Stochastic Runge–Kutta algorithms. I. White noise. Phys. Rev. A 45, 600–603 (1992)

    Article  CAS  Google Scholar 

  19. Kasdin, N.: Runge–Kutta algorithm for the numerical integration of stochastic differential equations. J. Guid. Control Dyn. 18, 114 (1995)

    Article  Google Scholar 

  20. Higham, D.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  Google Scholar 

  21. Jansen, L., Hölscher, H., Fuchs, H., Schirmeisen, A.: Temperature dependence of atomic-scale stick-slip friction. Phys. Rev. Lett. 104, 256101 (2010)

    Article  Google Scholar 

  22. Bennewitz, R., Gyalog, T., Guggisberg, M., Bammerlin, M., Meyer, E., Güntherodt, H.J.: Atomic-scale stick-slip processes on Cu(111). Phys. Rev. B 60, R11301 (1999)

    Article  CAS  Google Scholar 

  23. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)

    Article  CAS  Google Scholar 

  24. Li, Q., Dong, Y., Perez, D., Martini, A., Carpick, R.W.: Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106, 126101 (2011)

    Article  Google Scholar 

  25. Furlong, O., Manzi, S., Pereyra, V., Bustos, V., Tysoe, W.: Monte Carlo simulations for Tomlinson sliding models for non-sinusoidal periodic potentials. Tribol. Lett. 39, 177 (2010)

    Article  CAS  Google Scholar 

  26. Krylov, S.Y., Jinesh, K.B., Valk, H., Dienwiebel, M., Frenken, J.W.M.: Thermally induced suppression of friction at the atomic scale. Phys. Rev. E 71, 065101 (2005)

    Article  Google Scholar 

  27. Jinesh, K.B., Krylov, S.Y., Valk, H., Dienwiebel, M., Frenken, J.W.M.: Thermolubricity in atomic-scale friction. Phys. Rev. B 78, 155440 (2008)

    Article  Google Scholar 

  28. Zhao, X., Phillpot, S.R., Sawyer, W.G., Sinnott, S., Perry, S.: Transition from thermal to athermal friction under cryogenic conditions. Phys. Rev. Lett. 102, 186102 (2009)

    Article  Google Scholar 

  29. Schirmeisen, A., Jansen, L., Holscher, H., Fuchs, H.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88, 123108 (2006)

    Article  Google Scholar 

  30. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 66104 (2010)

    Article  Google Scholar 

  31. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Temperature dependence of friction at the nanoscale: when the unexpected turns normal. Tribol. Lett. 39, 311–319 (2010)

    Article  Google Scholar 

  32. Müser, M.: Nature of mechanical instabilities and their effect on kinetic friction. Phys. Rev. Lett. 89, 224301 (2002)

    Article  Google Scholar 

  33. Dong, Y., Perez, D., Voter, A., Martini, A.: The roles of statics and dynamics in determining transitions between atomic friction regimes. Tribol. Lett. 42, 99–107 (2011)

    Article  Google Scholar 

  34. Chen, J., Ratera, I., Park, J., Salmeron, M.: Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 96, 236102 (2006)

    Article  Google Scholar 

  35. Evstigneev, M., Reimann, P.: Refined force-velocity relation in atomic friction experiments. Phys. Rev. B 73, 113401 (2006)

    Article  Google Scholar 

  36. Reimann, P., Evstigneev, M.: Nonmonotonic velocity dependence of atomic friction. Phys. Rev. lett. 93, 230802 (2004)

    Article  Google Scholar 

  37. Granato, E., Ying, S.: Non-monotonic velocity dependence of atomic friction. Tribol. Lett. 39, 229–233 (2010)

    Article  Google Scholar 

  38. Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251 (1990)

    Article  Google Scholar 

  39. Krylov, S.Y., Dijksman, J.A., van Loo, W.A., Frenken, J.W.M.: Stick-slip motion in spite of a slippery contact: do we get what we see in atomic friction?. Phys. Rev. Lett. 97, 166103 (2006)

    Article  Google Scholar 

  40. Tshiprut, Z., Filippov, A., Urbakh, M.: Effect of tip flexibility on stick-slip motion in friction force microscopy experiments. J. Phys. Condens. Matter 20, 354002 (2008)

    Article  Google Scholar 

  41. Lu, P., Loke, Y., Tang, X., Kushvaha, S., OShea, S.: A note on the two-spring Tomlinson model. Tribol. Lett. 43, 73 (2011)

    Article  Google Scholar 

  42. Conley, W., Krousgrill, C., Raman, A.: Stick-slip motions in the friction force microscope: effects of tip compliance. Tribol. Lett. 29, 23–32 (2008)

    Article  Google Scholar 

  43. Conley, W., Raman, A., Krousgrill, C.: Nonlinear dynamics in Tomlinsons model for atomic-scale friction and friction force microscopy. J. Appl. Phys. 98, 053519 (2005)

    Article  Google Scholar 

  44. Johnson, K., Woodhouse, J.: Stick slip motion in the atomic force microscope. Tribol. Lett. 5, 155–160 (1998)

    Article  CAS  Google Scholar 

  45. Medyanik, S., Liu, W., Sung, I.H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)

    Article  Google Scholar 

  46. Roth, R., Glatzel, T., Steiner, P., Gnecco, E., Baratoff, A., Meyer, E.: Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Tribol. Lett. 39, 63–69 (2010)

    Article  CAS  Google Scholar 

  47. Luan, B., Robbins, M.: The breakdown of continuum models for mechanical contacts. Nat. Biotechnol. 435, 929–932 (2005)

    CAS  Google Scholar 

  48. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)

    Article  CAS  Google Scholar 

  49. Dienwiebel, M., Verhoeven, G., Pradeep, N., Frenken, J.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  Google Scholar 

  50. Harten, U., Lahee, A.M., Toennies, J.P., Wöll, C.: Observation of a soliton reconstruction of Au(111) by high-resolution helium-atom diffraction. Phys. Rev. Lett. 54, 2619–2622 (1985)

    Article  CAS  Google Scholar 

  51. Wöll, C., Chiang, S., Wilson, R.J., Lippel, P.H.: Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy. Phys. Rev. B 39, 7988–7991 (1989)

    Article  Google Scholar 

  52. Maier, S., Gnecco, E., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments. Phys. Rev. B 78, 45432 (2008)

    Article  Google Scholar 

  53. Filleter, T., Bennewitz, R.: Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Phys. Rev. B 81, 155412 (2010)

    Article  Google Scholar 

  54. Tshiprut, Z., Zelner, S., Urbakh, M.: Temperature-induced enhancement of nanoscale friction. Phys. Rev. Lett. 102, 136102 (2009)

    Article  CAS  Google Scholar 

  55. Fajardo, O.Y., Mazo, J.J.: Effects of surface disorder and temperature on atomic friction. Phys. Rev. B 82, 035435 (2010)

    Article  Google Scholar 

  56. Motchongom-Tingue, M., Djuidjé Kenmoé, G., Kofané, T.: Stick-slip motion and static friction in a nonlinear deformable substrate potential. Tribol. Lett. 43, 65 (2011)

    Article  Google Scholar 

  57. Steiner, P., Gnecco, E., Filleter, T., Gosvami, N., Maier, S., Meyer, E., Bennewitz, R.: Atomic friction investigations on ordered superstructures. Tribol. Lett. 39, 321 (2010)

    Article  CAS  Google Scholar 

  58. Li, Q., Dong, Y., Martini, A., Carpick, R.W.: Atomic friction modulation on the reconstructed Au (111) surface. Tribol. Lett. 3, 369 (2011)

    Article  Google Scholar 

  59. Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207 (2006)

    Article  CAS  Google Scholar 

  60. Lantz, M., Wiesmann, D., Gotsmann, B.: Dynamic superlubricity and the elimination of wear on the nanoscale. Nat. Nanotechnol. 4, 586–591 (2009)

    Article  CAS  Google Scholar 

  61. Maier, S., Sang, Y., Filleter, T., Grant, M., Bennewitz, R., Gnecco, E., Meyer, E.: Fluctuations and jump dynamics in atomic friction experiments. Phys. Rev. B 72, 245418 (2005)

    Article  Google Scholar 

  62. Igarashi, M., Nakamura, J., Natori, A.: Mechanism of velocity saturation of atomic friction force and dynamic superlubricity at torsional resonance. Jpn. J. Appl. Phys. 46, 5591 (2007)

    Article  CAS  Google Scholar 

  63. Fujisawa, S., Sugawara, Y., Ito, S., Mishima, S., Okada, T., Morita, S.: The two-dimensional stick-slip phenomenon with atomic resolution. Nanotechnology 4, 138 (1993)

    Article  Google Scholar 

  64. Fujisawa, S., Kishi, E., Sugawara, Y., Morita, S.: Atomic-scale friction observed with a two-dimensional frictional-force microscope. Phys. Rev. B 51, 7849–7857 (1995)

    Article  CAS  Google Scholar 

  65. Kerssemakers, J., De Hosson, J.: Atomic force microscopy imaging of transition metal layered compounds: a two-dimensional stick-slip system. Appl. Phys. Lett. 67, 347 (1995)

    Article  CAS  Google Scholar 

  66. Verhoeven, G., Dienwiebel, M., Frenken, J.: Model calculations of superlubricity of graphite. Phys. Rev. B 70, 165418 (2004)

    Article  Google Scholar 

  67. Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Meyer, E.: Angular dependence of static and kinetic friction on alkali halide surfaces. Phys. Rev. B 82, 205417 (2010)

    Article  Google Scholar 

  68. Sörensen, M.R., Jacobsen, K.W., Stoltze, P.: Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101–2113 (1996)

    Article  Google Scholar 

  69. Park, J., Ogletree, D., Salmeron, M., Ribeiro, R., Canfield, P., Jenks, C., Thiel, P.: High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309, 1354 (2005)

    Article  CAS  Google Scholar 

  70. Filippov, A., Vanossi, A., Urbakh, M.: Origin of friction anisotropy on a quasicrystal surface. Phys. Rev. lett. 104, 74302 (2010)

    Article  Google Scholar 

  71. Johnson, K.: Mechanics of adhesion. Tribol. Int. 31, 413–418 (1998)

    Article  Google Scholar 

  72. Johnson, K., Kendall, K., Roberts, A.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. Ser. A 324, 301–313 (1971)

    Article  CAS  Google Scholar 

  73. Derjaguin, B., Muller, V., Toporov, Y.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 67, 314–326 (1975)

    Article  Google Scholar 

  74. Gosvami, N., Filleter, T., Egberts, P., Bennewitz, R.: Microscopic friction studies on metal surfaces. Tribol. Lett. 39, 19–24 (2010)

    Article  CAS  Google Scholar 

  75. Dietzel, D., Ritter, C., Monninghoff, T., Fuchs, H., Schirmeisen, A., Schwarz, U.: Frictional duality observed during nanoparticle sliding. Phys. Rev. Lett. 101, 125505 (2008)

    Article  Google Scholar 

  76. Dong, Y., Li, Q., Wu, J., Martini, A.: Friction, slip and structural inhomogeneity of the buried interface. Model. Simul. Mater. Sci. Eng. 19, 065003 (2011)

    Article  Google Scholar 

  77. Müser, M.: Structural lubricity: role of dimension and symmetry. Europhys. Lett. 66, 97–103 (2004)

    Article  Google Scholar 

  78. Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642–2645 (1991)

    Article  CAS  Google Scholar 

  79. Crossley, A., Kisi, E.H., Summers, J.W.B., Myhra, S.: Ultra-low friction for a layered carbide-derived ceramic, Ti3SiC2, investigated by lateral force microscopy (LFM). J. Phys. D Appl. Phys. 32, 632 (1999)

    Article  CAS  Google Scholar 

  80. Gyalog, T., Bammerlin, M., Lüthi, R., Meyer, E., Thomas, H.: Mechanism of atomic friction. Europhys. Lett. 31, 269 (1995)

    Article  CAS  Google Scholar 

  81. Gyalog, T., Thomas, H.: Friction between atomically flat surfaces. Europhys. Lett. 37, 195 (1997)

    Article  CAS  Google Scholar 

  82. Kim, W., Falk, M.: Atomic-scale simulations on the sliding of incommensurate surfaces: the breakdown of superlubricity. Phys. Rev. B 80, 235428 (2009)

    Article  Google Scholar 

  83. Braun, O., Manini, N.: Dependence of boundary lubrication on the misfit angle between the sliding surfaces. Phys. Rev. E 83, 021601 (2011)

    Article  CAS  Google Scholar 

  84. Manini, N., Braun, O.: Crystalline misfit-angle implications for solid sliding. Phys. Lett. A 375, 2946. Arxiv preprint arXiv:11015508 (2011)

  85. Raman, A., Melcher, J., Tung, R.: Cantilever dynamics in atomic force microscopy. Nano Today 3, 20–27 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for insightful discussions with Drs. Qunyang Li and Danny Perez. This study was funded by the National Science Foundation through grant CMMI-1068552.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashlie Martini.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y., Vadakkepatt, A. & Martini, A. Analytical Models for Atomic Friction. Tribol Lett 44, 367 (2011). https://doi.org/10.1007/s11249-011-9850-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-011-9850-2

Keywords

Navigation