Skip to main content

Advertisement

Log in

Raman Scattering from Confined Liquid Films in the Sub-Nanometre Regime

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Raman spectroscopy has been used to study the confinement of octamethylcyclotetrasiloxane (OMCTS) and n-hexadecane between a prism and a lens at contact pressures of 40 MPa. Both lens and prism surfaces were optically smooth but not atomically flat. A total internal reflection geometry was employed to provide the sensitivity needed to detect liquid films of sub-nanometre thickness. For both liquids, the thickness of the residual film under load corresponded to less than a monolayer of liquid. The Raman spectra of the confined liquids were identical or very similar to that of the bulk liquid. Similar results were obtained for hexadecane confined between two surfaces coated with a Langmuir-Blodgett monolayer of a fatty acid. We infer that the liquids do not form a boundary layer under these conditions but rather they are squeezed out of the contact under the modest pressure applied. We ascribe the residual signal to liquid trapped in scratches or other defects on the surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhushan, B.: Introduction to Tribology. Wiley, New York, 2002

    Google Scholar 

  2. O’Shea, S.J., Welland, M.E.: Langmuir 14, 4186 (1998)

    Article  CAS  Google Scholar 

  3. Bhushan, B., Israelachvili, J.B., Landman, U.: Nature 374, 607 (1995)

    Article  CAS  Google Scholar 

  4. Demirel, A.L., Granick, S.: Phys. Rev. Lett 77, 2261 (1996)

    Article  CAS  Google Scholar 

  5. Klein, J., Kumacheva, E.: J. Chem. Phys 108, 6996 (1998)

    Article  CAS  Google Scholar 

  6. Kumacheva, E., Klein, J.: J. Chem. Phys 108, 7010 (1998)

    Article  CAS  Google Scholar 

  7. Christenson, H.K., Gruen, D.W.R., Horn, R.G., Israelachvili, J.N.: J. Chem. Phys. 87, 1834 (1987)

    Article  CAS  Google Scholar 

  8. Mugele, F., Baldelli, S., Somorjai, G.A., Salmeron, M.: J. Phys. Chem. B 104, 3140 (2000)

    Article  CAS  Google Scholar 

  9. Mugele, F., Salmeron, M.: Phys. Rev. Lett. 84, 5796 (2000)

    Article  CAS  Google Scholar 

  10. Qian, L., Luengo, G., Douillet, D., Charlot, M., Dollat, X., Perez, E.: Rev. Sci. Instrum. 72, 4171 (2001)

    Article  CAS  Google Scholar 

  11. Gao, J., Luedtke, W.D., Landman, U.: Phys. Rev. Lett. 79, 705 (1997)

    Article  CAS  Google Scholar 

  12. Curry, J.E.: J. Chem. Phys. 113, 2400 (2000)

    Article  CAS  Google Scholar 

  13. Curry, J.E.: Mol. Phys. 99, 745 (2001)

    Article  CAS  Google Scholar 

  14. Gao, J., Luedtke, W.D., Landman, U.: J. Chem. Phys. 106, 4309 (1997)

    Article  CAS  Google Scholar 

  15. Gao, J., Luedtke, W.D., Landman, U.: J. Phys. Chem. B 101, 4013 (1997)

    Article  CAS  Google Scholar 

  16. Frink, L.J.D., van Swol, F.: J. Chem. Phys. 108, 5588 (1998)

    Article  CAS  Google Scholar 

  17. Gao, J., Luedtke, W.D., Landman, U.: Tribol. Lett. 9, 3 (2000)

    Article  CAS  Google Scholar 

  18. Ghatak, C., Ayappa, K.G.: J. Chem. Phys. 120, 9703 (2004)

    Article  CAS  Google Scholar 

  19. Spikes, H.A.: Langmuir 12, 4567 (1996)

    Article  CAS  Google Scholar 

  20. Zhu, Y., Granick, S.: Langmuir 19, 8148 (2003)

    Article  CAS  Google Scholar 

  21. Heuberger, M., Zaech, M.: Langmuir 19, 1943 (2003)

    Article  CAS  Google Scholar 

  22. Glovnea, R.P., Forrest, A.K., Olver, A.V., Spikes, H.A.: Tribol. Lett. V15, 217 (2003)

    Article  Google Scholar 

  23. Beattie, D.A., Haydock, S., Bain, C.D.: Vib. Spectrosc. 24, 109 (2000)

    Article  CAS  Google Scholar 

  24. Haydock, S.A.: In situ vibrational spectroscopy of thin organic films confined at the solid-solid interface, PhD Thesis, University of Oxford (2002)

  25. Beattie, D.A., Fraenkel, R., Winget, S.A., Petersen, A., Bain, C.D.: J. Phys. Chem. B 110, 2278 (2006)

    Article  CAS  Google Scholar 

  26. Fraenkel, R., Butterworth, G.E., Bain, C.D.: J. Am. Chem. Soc. 120, 203 (1998)

    Article  CAS  Google Scholar 

  27. Greene, P.A., Bain, C.D.: Spectrosc. Eur. 16, 8 (2004)

    CAS  Google Scholar 

  28. Bae, S.C., Lee, H., Lin, Z., Granick, S.: Langmuir 21, 5685 (2005)

    Article  CAS  Google Scholar 

  29. Cann, P.M., Spikes, H.A.: Tribol. Lett. V19, 289 (2005)

    Article  CAS  Google Scholar 

  30. Demirel, A.L., Granick, S.: J. Chem. Phys. 115, 1498 (2001)

    Article  CAS  Google Scholar 

  31. He, M., Szuchmacher Blum, A., Overney, G., Overney, R.M.: Phys. Rev. Lett. 88, 154302/1 (2002)

    Article  CAS  Google Scholar 

  32. Heavens, O., Ditchburn, R.: Insight into Optics. Wiley, Chichester, (1991)

    Google Scholar 

  33. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  34. Harrick, N.J.: Internal Reflection Spectroscopy. Harrick Scientific Corp, Ossining, NY, (1967)

    Google Scholar 

  35. Taylor, J.R.: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, Mill Valley, CA; Oxford University Press, Oxford (1982)

  36. Gaber, B.P., Peticolas, W.L.: Biochim. Biophys. Acta. Biomembr.465, 260 (1977)

    Article  CAS  Google Scholar 

  37. Ho, M., Pemberton, J.E.: Anal. Chem. 70, 4915 (1998)

    Article  CAS  Google Scholar 

  38. Lee, C., Bain, C.D.: Biochim. Biophys. Acta. Biomembr. 1711, 59 (2005)

    Article  CAS  Google Scholar 

  39. MacPhail, R.A., Strauss, H.L., Snyder, R.G., Elliger, C.A.: J. Phys. Chem. 88, 334 (1984)

    Article  CAS  Google Scholar 

  40. Castaings, N., Blaudez, D., Desbat, B., Turlet, J.M.: Thin Solid Films 284–285, 631 (1996)

  41. Du, Q., Xiao, X.D., Charych, D., Wolf, F., Frantz, P., Shen, Y.R., Salmeron, M.: Phys. Rev. B-Condens. Matter. 51, 7456 (1995)

    CAS  Google Scholar 

  42. Mugele, F., Salmeron, M.: J. Chem. Phys. 114, 1831 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the EPSRC, the Leverhulme Trust, and the British Ramsay Memorial Fellowship Trust for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin D. Bain.

Appendix

Appendix

The evanescent wave of a totally internally reflected laser can be used to determine the thickness of a confined liquid, using the relative strengths of the Raman spectrum of a thick film and that of the confined film (see Fig. 1b). The electric field intensity of the evanescent wave can be expressed as a function of the interfacial electric field, E 0, and the distance from the interface, z:

$$ \hbox{E}=\hbox{E}_0\exp\left({-z/d_p}\right) $$
(A1)

where d p is the penetration depth of the evanescent wave, given by

$$ d_p=\frac{\lambda}{2\pi n_i \left({\sin^2\theta_i-n_{ti}^2}\right)^{1/2}} $$
(A2)

where λ is the wavelength of the light, θ i is the incident angle, and n ti is the ratio of the refractive indices of the transmitted and incident media, respectively (n t /n i ).

Raman scattering intensity is proportional to the square of the electric field. The intensity (I thick ) of the Raman scattering from a thick film of liquid (thickness >> d p ) is proportional to the integral of the electric field strength over the depth of the evanescent wave:

$$ \begin{array}{l} I_{thick}\propto\int_0^\infty{\hbox{E}^2dz} \\ \propto\frac{1}{2}\hbox{E}_0^2 d_p \\ \end{array} $$
(A3)

In the case of a thin film of liquid at the solid–solid interface, the intensity of the Raman scattering is proportional to the interfacial electric field multiplied by the thickness of the film:

$$ I_{thin}\propto\hbox{E}_0^2 d_t $$
(A4)

The interfacial electric field is not the same at the solid–liquid (E0,s-l ) and solid–solid interfaces (E0,s-s ). Dividing Eq. A3 by Eq. A4 yields an expression for the thickness of the thin film:

$$ d_t=\frac{\hbox{E}_{0,s-l}^2}{\hbox{E}_{0,s-s}^2}\frac{I_{thin} d_p}{2I_{thick}} $$
(A5)

If the incident electric field is the same in both cases, the ratio E 20,s-l /E 20,s-s can be replaced by the corresponding ratio of the Fresnel coefficients, K, that express the interfacial electric field in terms the incident field.

$$ d_t=\frac{\left|{K_{s,y}^{sol-liq}}\right|^2}{\left|{K_{s,y}^{sol-sol}} \right|^2}\frac{I_{thin}d_p}{2I_{thick}} $$
(A6)

For s-polarised light, the real and imaginary parts of the Fresnel coefficients are

$$ \hbox{Re}(K_{s,y})=\frac{2\cos^2\theta_i}{1-n_{ti}^2} $$
(A7)
$$ \hbox{Im}(K_{s,y})=\frac{-2\cos\theta_i(\sin^2\theta_i-n_{ti}^2) ^{1/2}}{1-n_{ti}^2} $$
(A8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beattie, D.A., Winget, S.A. & Bain, C.D. Raman Scattering from Confined Liquid Films in the Sub-Nanometre Regime. Tribol Lett 27, 159–167 (2007). https://doi.org/10.1007/s11249-007-9214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-007-9214-0

Keywords

Navigation