Skip to main content
Log in

Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The coat protein (CP) of Tomato yellow leaf curl virus (TYLCV), encoded by the v1 gene, is the only known component of the viral capsid. In addition, the CP plays a role in the virus transport into the host cell nucleus where viral genes are replicated and transcribed. In this study, we analyzed the effect of small interfering double-stranded RNAs (siRNAs), derived from an intron-hairpin RNA (ihpRNA) construct and targeting the v1 gene product, on CP accumulation. Transient assays involving agroinfiltration of the CP-silencing construct followed by infiltration of a fused GFP-CP (green fluorescent protein-coat protein) gene showed down-regulation of GFP expression in Nicotiana benthamiana. Some of the transgenic tomato plants (cv. Micro-Tom), expressing the siRNA targeted against the TYLCV CP gene, did not show disease symptoms 7 weeks post-inoculation with the virus, while non-transgenic control plants were infected within 2 weeks post inoculation. The present study demonstrates, for the first time, that siRNA targeted against the CP of TYLCV can confer resistance to the virus in transgenic tomato plants, thereby enabling flowering and fruit production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Bendahmane A, Querci M, Kanyuka K, Baulcombe DC (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the R × 2 locus in potato. Plant J 21:73–81

    Article  PubMed  CAS  Google Scholar 

  • Boulton MI, Steinkellner H, Donson J, Markham PG, King DI, Davies JW (1989) Mutational analysis of the virion-sense genes of maize streak virus. J Gen Virol 70(Pt 9):2309–2323

    Article  PubMed  CAS  Google Scholar 

  • Briddon RW, Watts J, Markham PG, Stanley J (1989) The coat protein of beet curly top virus is essential for infectivity. Virology 172:628–633

    Article  PubMed  CAS  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2004) Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J Virol 78: 7465–7477

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. BioTechniques 16:664–670

    PubMed  CAS  Google Scholar 

  • Cohen S, Antignus Y (1994) Tomato yellow leaf curl virus (TYLCV), a whitefly-borne geminivirus of tomatoes. In: Harris KF (eds) Vol 10. Springer-Verlag, New York, pp 259–288

  • Ding SW, Li H, Lu R, Li F, Li W-X (2004) RNA silencing: a conserved antiviral immunity of plants and animals. Virus Res. 102: 109–115

    Article  PubMed  CAS  Google Scholar 

  • Dong X, van Wezel R, Stanley J, Hong Y (2003) Functional characterization of the nuclear localization signal for a suppressor of posttranscriptional gene silencing. J Virol 77: 7026–7033

    Article  PubMed  CAS  Google Scholar 

  • Fillati JJ, Kiser J, Rose R, Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Biotechnology 5: 726–730

    Article  Google Scholar 

  • Friedmann M, Lapidot M, Cohen S, Pilowsky M (1998) A novel source of resistance to tomato yellow leaf curl virus exhibiting a symptomless reaction to viral infection. J Am Soc Hort Sci 123:1004–1007

    Google Scholar 

  • Gafni Y (1998) Nucleocytoplasmic trafficking of geminiviral proteins. Current Sci 75:1148–1152

    CAS  Google Scholar 

  • Gafni Y (2003) Tomato yellow leaf curl virus, the intracellular dynamics of a plant DNA virus. Mol Plant Pathol 4:9–15

    Article  CAS  Google Scholar 

  • Gafni Y, Epel BL (2002) The role of host and viral proteins in intra- and inter-cellular trafficking of geminiviruses. Physiol Mol Plant Pathol 60:231–241

    Article  CAS  Google Scholar 

  • Gal-On A, Wolf D, Antignus Y, Patlis L, Hyun Ryu K, Eun Min B, Pearlsman M, Lachman O, Gaba V, Wang Y, Moshe Shibolet Y, Yang J, Zelcer A (2005) Transgenic cucumbers harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection. Trans Res 14:81–93

    Article  CAS  Google Scholar 

  • Hallan V, Gafni Y (2001) Tomato yellow leaf curl virus (TYLCV) capsid protein (CP) subunit interactions: implications for viral assembly. Arch Virol 146:1765–1773

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helperplasmids for gene transfer to plants. Trans Res 2:208–218

    Article  CAS  Google Scholar 

  • Kheyr-Pour A, Bendahmane M, Matzeit V, Accotto GP, Crespi S, Gronenborn B (1991) Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res 19:6763–6769

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Kunik T, Palanichelvam K, Czosnek H, Citovsky V, Gafni Y (1998) Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant J 13:393–399

    Article  PubMed  CAS  Google Scholar 

  • Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I, Gafni Y, Czosnek H (1994) Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Biotechnology (NY) 12:500–504

    Article  CAS  Google Scholar 

  • Lapidot M, Friedmann M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Annals of Applied Biology 140:109–127

    Article  Google Scholar 

  • Lapidot M, Friedmann M, Lachman O, Yehezkel A, Nahon S, Cohen S, Pilowsky M (1997) Comparison of resistance level to Tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Disease 81:1425–1428

    Google Scholar 

  • Lazarowitz SG, Pinder AJ, Damsteegt VD, Rogers SG (1989) Maize streak virus genes essential for systemic spread and symptom development. EMBO J 8:1023–1032

    PubMed  CAS  Google Scholar 

  • Mansoor S, Briddon RW, Zafar Y, Stanley J (2003) Geminivirus disease complexes: an emerging threat. Trends Plant Sci 8:128–134

    Article  PubMed  CAS  Google Scholar 

  • Martins CR, Johnson JA, Lawrence DM, Choi TJ, Pisi AM, Tobin SL, Lapidus D, Wagner JD, Ruzin S, McDonald K, Jackson AO (1998) Sonchus yellow net rhabdovirus nuclear viroplasms contain polymerase-associated proteins. J Virol 72:5669–5679

    PubMed  CAS  Google Scholar 

  • Mathieu O, Bender J (2004) RNA-directed DNA methylation. J Cell Sci 117:4881–4888

    Article  PubMed  CAS  Google Scholar 

  • Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A, Elkind YAL (1997) A new model system for tomato genetics. The Plant J 12:1465–1472

    Article  CAS  Google Scholar 

  • Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature 431:338–342

    Article  PubMed  CAS  Google Scholar 

  • Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134

    Article  PubMed  CAS  Google Scholar 

  • Nakhla MK, Maxwell DP (1998) Epidemiology and management of tomato yellow leaf curl disease. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St. Paul, Minnesota, USA, pp 565–578

    Google Scholar 

  • Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H (1991) Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185:151–161

    Article  PubMed  CAS  Google Scholar 

  • Noris E, Accotto GP, Tavazza R, Brunetti A, Crespi S, Tavazza M (1996) Resistance to tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C1 gene. Virology 224:130–138

    Article  PubMed  CAS  Google Scholar 

  • Noris E, Lucioli A, Tavazza R, Caciagli P, Accotto GP, Tavazza M (2004) Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. J Gen Virol 85:1745–1749

    Article  PubMed  CAS  Google Scholar 

  • Noris E, Vaira AM, Caciagli P, Masenga V, Gronenborn B, Accotto GP (1998) Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J Virol 72:10050–10057

    PubMed  CAS  Google Scholar 

  • Palanichelvam K, Kunik T, Citovsky V, Gafni Y (1998) The capsid protein of tomato yellow leaf curl virus binds cooperatively to single-stranded DNA. J Gen Virol 79(Pt 11):2829–2833

    PubMed  CAS  Google Scholar 

  • Park SH, Morris JL, Park JE, Hirschi KD, Smith RH (2003) Efficient and genotype-independent Agrobacterium–mediated tomato transformation. J Plant Physiol 160:1253–1257

    Article  PubMed  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location and population dynamics. Proc Nation Acad Sci USA 81:8014–8018

    Article  CAS  Google Scholar 

  • Sagi G, Katz A, Guenoune-Gelbart D, Epel BL (2005) Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the golgi apparatus. Plant Cell 17:1788–1800

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning – a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press

  • Smith NA, Singh SP, Wang M-B, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Gene expression: Total silencing by intron-spliced hairpin. Nature 407:319–320

    Article  PubMed  CAS  Google Scholar 

  • Vanitharani R, Chellappan P, Fauquet CM (2005) Geminiviruses and RNA silencing. Trends Plant Sci 10:144–151

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Eduard Belausov for his excellent technical assistance with the confocal microscope. This work was supported by the U.S.-Israel Binational Agricultural Research and Development Fund (BARD) grant IS-3347-02 to Y. G., the Chief Scientist of the Ministry of Agriculture grant 261-0416 and the Israel Science Foundation grant 998/04 to Y.G. and A.L. We also wish to thank the Israeli Foreign Ministry for a MASHAV Fellowship awarded to P.K. This paper is a contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 17/06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yedidya Gafni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zrachya, A., Kumar, P.P., Ramakrishnan, U. et al. Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Res 16, 385–398 (2007). https://doi.org/10.1007/s11248-006-9042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9042-2

Keywords

Navigation