Skip to main content
Log in

Effect of Tin in the Bulk of Platinum–Tin Alloys for Ethane Dehydrogenation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalytic ethane dehydrogenation was studied with density functional theory (DFT) calculations to investigate the differing role of Sn in the bulk and surface of PtSn alloys on the activity, selectivity, and stability of the catalyst. Pristine Pt(111), a surface alloy of Pt3Sn/Pt(111) and a bulk alloy of Pt3Sn(111) were compared. Binding energies of adsorbates were weakened by Sn on both alloys. With few changes for binding geometries of adsorbates, the change in binding energies was mainly attributed to the changes in the electronic interaction due to the strain effect and/or the ligand effect from d-band theory on the alloys. Especially, the combination of ligand and strain effects on the bulk alloy made the binding energies of adsorbates generally weaker than on Pt but stronger than on the surface alloy. In the successive dehydrogenation of C2Hx species, the activity was expected in the order of Pt > Pt3Sn > Pt3Sn/Pt by comparing the activation energies for ethene formation. The selectivity toward ethene was predicted using two descriptors from which the best selectivity was expected on Pt3Sn/Pt. Sn in the bulk made the gap between the barriers for ethene desorption and further dehydrogenation comparable, whereas ethene desorption was much more favorable on Pt3Sn/Pt. The preference for ethene formation from ethyl was also weakened on Pt3Sn. Therefore, despite the higher Sn composition, worse selectivity was predicted for Sn-rich bulk alloy than the surface alloy, followed by Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ridha T, Li Y, Gençer E, Siirola JJ, Miller JT, Ribeiro FH, Agrawal R (2018) Processes 6:139

    CAS  Google Scholar 

  2. Wang Q, Chen X, Jha AN, Rogers H (2014) Renew Sustain Energy Rev 30:1–28

    Google Scholar 

  3. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613–10653

    CAS  PubMed  Google Scholar 

  4. Amghizar I, Vandewalle LA, Van Geem KM, Marin GB (2017) Engineering 3:171–178

    CAS  Google Scholar 

  5. Sadrameli SM (2015) Fuel 140:102–115

    CAS  Google Scholar 

  6. Cavani F, Ballarini N, Cericola A (2007) Catal Today 127:113–131

    CAS  Google Scholar 

  7. Sadrameli SM (2016) Fuel 173:285–297

    CAS  Google Scholar 

  8. Lee DY, Elgowainy A (2018) Int J Hydrog Energy 43:20143–20160

    CAS  Google Scholar 

  9. Vora BV (2012) Top Catal 55:1297–1308

    CAS  Google Scholar 

  10. Galvita V, Siddiqi G, Sun P, Bell AT (2010) J Catal 271:209–219

    CAS  Google Scholar 

  11. Wu J, Peng Z, Bell AT (2014) J Catal 311:161–168

    CAS  Google Scholar 

  12. Wegener EC, Wu Z, Tseng HT, Gallagher JR, Ren Y, Diaz RE, Ribeiro FH, Miller JT (2018) Catal Today 299:146–153

    CAS  Google Scholar 

  13. Siddiqi G, Sun P, Galvita V, Bell AT (2010) J Catal 274:200–206

    CAS  Google Scholar 

  14. Xiao L, Ma F, Zhu YA, Sui ZJ, Zhou JH, Zhou XG, Chen D, Yuan WK (2019) Chem Eng J 377:120049

    Google Scholar 

  15. Yang ML, Zhu YA, Zhou XG, Sui ZJ, Chen D (2012) ACS Catal 2:1247–1258

    CAS  Google Scholar 

  16. Nykänen L, Honkala K (2011) J Phys Chem C 115:9578–9586

    Google Scholar 

  17. Nykänen L, Honkala K (2013) ACS Catal 3:3026–3030

    Google Scholar 

  18. Hansen MH, Nørskov JK, Bligaard T (2019) J Catal 374:161–170

    CAS  Google Scholar 

  19. Zhang Y, Zhou Y, Shi J, Zhou S, Sheng X, Zhang Z, Xiang S (2014) J Mol Catal A 381:138–147

    CAS  Google Scholar 

  20. Lee MH, Nagaraja BM, Lee KY, Jung KD (2014) Catal Today 232:53–62

    CAS  Google Scholar 

  21. Kim J, Fu J, Podkolzin SG, Koel BE (2010) J Phys Chem C 114:17238–17247

    CAS  Google Scholar 

  22. Liu Y, Li D, Stamenkovic VR, Soled S, Henao JD, Sun S (2011) ACS Catal 1:1719–1723

    CAS  Google Scholar 

  23. Somodi F, Peng Z, Getsoian AB, Bell AT (2011) J Phys Chem C 115:19084–19090

    CAS  Google Scholar 

  24. Crabb EM, Marshall R, Thompsett D (2000) J Electrochem Soc 147:4440–4447

    CAS  Google Scholar 

  25. Hook A, Massa JD, Celik FE (2016) J Phys Chem C 120:27307–27318

    CAS  Google Scholar 

  26. Chen Y, Vlachos DG (2010) J Phys Chem C 114:4973–4982

    CAS  Google Scholar 

  27. Yang ML, Zhu J, Zhu YA, Sui ZJ, Yu YD, Zhou XG, Chen D (2014) J Mol Catal A 395:329–336

    CAS  Google Scholar 

  28. Haubrich J, Becker C, Wandelt K (2009) Surf Sci 603:1476–1485

    CAS  Google Scholar 

  29. Peng G, Gerceker D, Kumbhalkar M, Dumesic JA, Mavrikakis M (2018) Catal Sci Technol 8:2159–2174

    CAS  Google Scholar 

  30. Hook A, Celik FE (2017) J Phys Chem C 121:17882–17892

    CAS  Google Scholar 

  31. Saerens S, Sabbe MK, Galvita VV, Redekop EA, Reyniers MF, Marin GB (2017) ACS Catal 7:7495–7508

    CAS  Google Scholar 

  32. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    CAS  Google Scholar 

  33. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    CAS  Google Scholar 

  34. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    CAS  Google Scholar 

  35. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Google Scholar 

  36. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    CAS  Google Scholar 

  37. Jiang L, Sun G, Sun S, Liu J, Tang S, Li H, Zhou B, Xin Q (2005) Electrochim Acta 50:5384–5389

    CAS  Google Scholar 

  38. Atrei A, Bardi U, Rovida G, Torrini M, Zanazzi E (1992) Phys Rev B 46:1649–1654

    CAS  Google Scholar 

  39. Neugebauer J, Scheffler M (1992) Phys Rev B 46:16067–16080

    CAS  Google Scholar 

  40. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Google Scholar 

  41. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901–9904

    CAS  Google Scholar 

  42. Duan Z, Zhong J, Wang G (2010) J Chem Phys 133:114701

    PubMed  Google Scholar 

  43. Viñes F, Lykhach Y, Staudt T, Lorenz MPA, Papp C, Steinrück HP, Libuda J, Neyman KM, Görling A (2010) Chem Eur J 16:6530–6539

    PubMed  Google Scholar 

  44. Yang ML, Zhu YA, Fan C, Sui ZJ, Chen D, Zhou XG (2010) J Mol Catal A 321:42–49

    CAS  Google Scholar 

  45. Watwe RM, Cortright RD, Mavrikakis M, Nørskov JK, Dumesic JA (2001) J Chem Phys 114:4663–4668

    CAS  Google Scholar 

  46. Zhao ZJ, Moskaleva LV, Aleksandrov HA, Basaran D, Rösch N (2010) J Phys Chem C 114:12190–12201

    CAS  Google Scholar 

  47. Hammer B, Nørskov JK (1995) Surf Sci 343:211–220

    CAS  Google Scholar 

  48. Hammer B, Nørskov JK (1995) Nature 376:238–240

    CAS  Google Scholar 

  49. Xu Y, Ruban AV, Mavrikakis M (2004) J Am Chem Soc 126:4717–4725

    CAS  PubMed  Google Scholar 

  50. Delbecq F, Sautet P (2003) J Catal 220:115–126

    CAS  Google Scholar 

  51. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) J Chem Phys 120:10240–10246

    CAS  PubMed  Google Scholar 

  52. Tasbihi M, Feyzi F, Amlashi MA, Abdullah AZ, Mohamed AR (2007) Fuel Process Technol 88:883–889

    CAS  Google Scholar 

Download references

Acknowledgements

This work used resources from the Rutgers Discovery Informatics Institute, which are supported by Rutgers and the State of New Jersey. The authors would like to thank Dr. Alec Hook for his leadership in the early stages of this project.

Funding

This work was funded by the National Science Foundation under Grant Number CBET-1705746.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuat E. Celik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1956 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, J., Celik, F.E. Effect of Tin in the Bulk of Platinum–Tin Alloys for Ethane Dehydrogenation. Top Catal 63, 700–713 (2020). https://doi.org/10.1007/s11244-020-01297-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01297-w

Keywords

Navigation