Skip to main content
Log in

Ambient Pressure X-ray Photoelectron Spectroscopy for Probing Monometallic, Bimetallic and Oxide-Metal Catalysts Under Reactive Atmospheres and Catalytic Reaction Conditions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Synchrotron-based ambient pressure X-ray photoelectron spectroscopy (APXPS) is an important in situ chemical probe in the toolbox of chemists and materials engineers. It uniquely aids in the investigation of the surfaces and interfaces of complex systems under dynamic environments, such as catalysts operating at the solid/gas interface. Nanoparticles (NPs) produced via colloidal chemistry offer the advantage of narrow particle distributions in APXPS studies of catalysts. They provide a narrow distribution in size, shape and composition of catalysts, which provide a closer correlation to actual catalysts than single crystal models for which APXPS is extensively employed. In this paper, some case studies of colloidaly-made uniform nanoparticles catalysts will be outlined. The examples will include monometallic, bimetallic and binary oxide-metal catalysts, where APXPS is used in different reactive atmospheres and during catalytic reactions. First, in situ CO oxidation studies of monometallic Rh NPs in the 2–7 nm range will be discussed. Next, APXPS studies of bimetallic NPs with size and composition control will be illustrated. NO-induced reversible core/shell restructuring of bimetallic PdRh NPs and gas-driven irreversible surface segregation of Cu in bimetallic CoCu NPs will be explained. To further illustrate the utility of the technique, APXPS and catalytic measurements carried out in parallel and under identical conditions will be described over bimetallic AuPd and CoPt NPs, during catalytic oxidation of CO. APXPS based structure–function correlations such as composition and ensemble dependence of catalytic activity will also be illustrated in this discussion. Finally, binary oxide-metal catalysts will be exemplified in APXPS studies of CeO2/Pt and TiO2/Co systems in hydrogen reducing atmospheres and/or during catalytic hydrogenation of CO2. Also, along with this idea, metal-support interactions in the forms of metal-induced reduction of oxide support, wetting and encapsulation of metal will be detailed in relation to catalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fellnerfeldegg H, Gelius U, Wannberg B et al (1974) New developments in esca-instrumentation. J Electron Spectrosc Relat Phenom 5:643–689. doi:10.1016/0368-2048(74)85045-0

    Article  CAS  Google Scholar 

  2. Gelius U, Basilier E, Svensson S et al (1973) A high resolution ESCA instrument with X-ray monochromator for gases and solids. J Electron Spectrosc Relat Phenom 2:405–434. doi:10.1016/0368-2048(73)80056-8

    Article  CAS  Google Scholar 

  3. Ogletree DF, Bluhm H, Lebedev G et al (2002) A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev Sci Instrum 73:3872–3877. doi:10.1063/1.1512336

    Article  CAS  Google Scholar 

  4. Salmeron M, Schlogl R (2008) Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf Sci Rep 63:169–199. doi:10.1016/j.surfrep.2008.01.001

    Article  CAS  Google Scholar 

  5. Rameshan C, Weilach C, Stadlmayr W et al (2010) Steam reforming of methanol on PdZn near-surface alloys on Pd(111) and Pd foil studied by in situ XPS, LEIS and PM-IRAS. J Catal 276:101–113. doi:10.1016/j.jcat.2010.09.006

    Article  CAS  Google Scholar 

  6. Rameshan C, Stadlmayr W, Penner S et al (2012) In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases. J Catal 290:126–137. doi:10.1016/j.jcat.2012.03.009

    Article  CAS  Google Scholar 

  7. Tao F, Dag S, Wang L-W et al (2010) Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327:850–853. doi:10.1126/science.1182122

    Article  CAS  Google Scholar 

  8. Zhang C, Grass ME, McDaniel AH et al (2010) Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nat Mater 9:944–949. doi:10.1038/nmat2851

    Article  CAS  Google Scholar 

  9. Stoltze P, Norskov J (1985) Bridging the pressure gap between ultrahigh-vacuum surface physics and high-pressure catalysis. Phys Rev Lett 55:2502–2505. doi:10.1103/PhysRevLett.55.2502

    Article  CAS  Google Scholar 

  10. Goodman D (1994) Catalysis—from Single-Crystals to the Real-World. Surf Sci 299:837–848. doi:10.1016/0039-6028(94)90701-3

    Article  Google Scholar 

  11. Dellwig T, Rupprechter G, Unterhalt H, Freund HJ (2000) Bridging the pressure and materials gaps: high pressure sum frequency generation study on supported Pd nanoparticles. Phys Rev Lett 85:776–779. doi:10.1103/PhysRevLett.85.776

    Article  CAS  Google Scholar 

  12. Goodman DW (2003) Model catalysts: from imagining to imaging a working surface. J Catal 216:213–222. doi:10.1016/S0021-9517(02)00112-4

    Article  CAS  Google Scholar 

  13. Somorjai GA, York RL, Butcher D, Park JY (2007) The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (< 10(-3) Torr) to high pressure (> 10(-3) Torr) to liquid interfaces. Phys Chem Chem Phys 9:3500–3513. doi:10.1039/b618805b

    Article  CAS  Google Scholar 

  14. Choudhary TV, Goodman DW (2005) Catalytically active gold: the role of cluster morphology. Appl Catal -Gen 291:32–36. doi:10.1016/j.apcata.2005.01.049

    Article  CAS  Google Scholar 

  15. Grass ME, Zhang Y, Butcher DR et al (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew Chem-Int Ed 47:8893–8896. doi:10.1002/anie.200803574

    Article  CAS  Google Scholar 

  16. Cargnello M, Doan-Nguyen VVT, Gordon TR et al (2013) Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341:771–773. doi:10.1126/science.1240148

    Article  CAS  Google Scholar 

  17. Christopher P, Linic S (2010) Shape- and size-specific chemistry of Ag nanostructures in catalytic ethylene epoxidation. Chemcatchem 2:78–83. doi:10.1002/cctc.200900231

    Article  CAS  Google Scholar 

  18. Alayoglu S, Aliaga C, Sprung C, Somorjai GA (2011) Size and shape dependence on pt nanoparticles for the methylcyclopentane/hydrogen ring opening/ring enlargement reaction. Catal Lett 141:914–924. doi:10.1007/s10562-011-0647-6

    Article  CAS  Google Scholar 

  19. Pushkarev VV, Musselwhite N, An K et al (2012) High structure sensitivity of vapor-phase furfural decarbonylation/hydrogenation reaction network as a function of size and shape of Pt nanoparticles. Nano Lett 12:5196–5201. doi:10.1021/nl3023127

    Article  CAS  Google Scholar 

  20. Baker LR, Kennedy G, Van Spronsen M et al (2012) Furfuraldehyde hydrogenation on titanium oxide-supported platinum nanoparticles studied by sum frequency generation vibrational spectroscopy: acid-base catalysis explains the molecular origin of strong metal-support interactions. J Am Chem Soc 134:14208–14216. doi:10.1021/ja306079h

    Article  CAS  Google Scholar 

  21. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676. doi:10.1021/jp051066p

    Article  CAS  Google Scholar 

  22. Bezemer GL, Bitter JH, Kuipers H et al (2006) Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964. doi:10.1021/ja058282w

    Article  CAS  Google Scholar 

  23. Melaet G, Ralston WT, Li C-S et al (2014) Evidence of highly active cobalt oxide catalyst for the fischer-tropsch synthesis and CO2 hydrogenation. J Am Chem Soc 136:2260–2263. doi:10.1021/ja412447q

    Article  CAS  Google Scholar 

  24. Iablokov V, Beaumont SK, Alayoglu S et al (2012) Size-controlled model co nanoparticle catalysts for CO2 hydrogenation: synthesis, characterization, and catalytic reactions. Nano Lett 12:3091–3096. doi:10.1021/nl300973b

    Article  CAS  Google Scholar 

  25. Kliewer CJ, Aliaga C, Bieri M et al (2010) Furan hydrogenation over Pt(111) and Pt(100) single-crystal surfaces and Pt nanoparticles from 1 to 7 nm: a kinetic and sum frequency generation vibrational spectroscopy study. J Am Chem Soc 132:13088–13095. doi:10.1021/ja105800z

    Article  CAS  Google Scholar 

  26. Aliaga C, Tsung C-K, Alayoglu S et al (2011) Sum frequency generation vibrational spectroscopy and kinetic study of 2-methylfuran and 2,5-dimethylfuran hydrogenation over 7 nm platinum cubic nanoparticles. J Phys Chem C 115:8104–8109. doi:10.1021/jp111343j

    Article  CAS  Google Scholar 

  27. Tsung C-K, Kuhn JN, Huang W et al (2009) Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation. J Am Chem Soc 131:5816–5822. doi:10.1021/ja809936n

    Article  CAS  Google Scholar 

  28. Crespo-Quesada M, Yarulin A, Jin M et al (2011) Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: which sites are most active and selective? J Am Chem Soc 133:12787–12794. doi:10.1021/ja204557m

    Article  CAS  Google Scholar 

  29. Bratlie KM, Lee H, Komvopoulos K et al (2007) Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett 7:3097–3101. doi:10.1021/nl0716000

    Article  CAS  Google Scholar 

  30. Pushkarev VV, An K, Alayoglu S et al (2012) Hydrogenation of benzene and toluene over size controlled Pt/SBA-15 catalysts: elucidation of the Pt particle size effect on reaction kinetics. J Catal 292:64–72. doi:10.1016/j.jcat.2012.04.022

    Article  CAS  Google Scholar 

  31. Somorjai GA (1997) New model catalysts (platinum nanoparticles) and new techniques (SFG and STM) for studies of reaction intermediates and surface restructuring at high pressures during catalytic reactions. Appl Surf Sci 121:1–19. doi:10.1016/S0169-4332(97)00255-9

    Article  Google Scholar 

  32. Borodko Y, Lee HS, Joo SH et al (2010) Spectroscopic study of the thermal degradation of PVP-capped Rh and Pt nanoparticles in H-2 and O-2 environments. J Phys Chem C 114:1117–1126. doi:10.1021/jp909008z

    Article  CAS  Google Scholar 

  33. Menard LD, Xu F, Nuzzo RG, Yang JC (2006) Preparation of TiO2-supported Au nanoparticle catalysts from a Au-13 cluster precursor: ligand removal using ozone exposure versus a rapid thermal treatment. J Catal 243:64–73. doi:10.1016/j.jcat.2006.07.006

    Article  CAS  Google Scholar 

  34. Aliaga C, Park JY, Yamada Y et al (2009) Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-ozone treatment. J Phys Chem C 113:6150–6155. doi:10.1021/jp8108946

    Article  CAS  Google Scholar 

  35. Lopez-Sanchez JA, Dimitratos N, Hammond C et al (2011) Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat Chem 3:551–556. doi:10.1038/nchem.1066

    Article  CAS  Google Scholar 

  36. Borodko Y, Humphrey SM, Tilley TD et al (2007) Charge-transfer interaction of poly(vinylpyrrolidone) with platinum and rhodium nanoparticles. J Phys Chem C 111:6288–6295. doi:10.1021/jp068742n

    Article  CAS  Google Scholar 

  37. Carenco S, Wu C-H, Shavorskiy A et al (2015) Synthesis and structural evolution of nickel-cobalt nanoparticles under H2 and CO2. Small. doi:10.1002/smll.201402795

    Google Scholar 

  38. La Parola V, Kantcheva M, Milanova M, Venezia AM (2013) Structure control of silica-supported mono and bimetallic Au-Pt catalysts via mercapto capping synthesis. J Catal 298:170–178. doi:10.1016/j.jcat.2012.11.007

    Article  Google Scholar 

  39. Schalow T, Brandt B, Starr DE et al (2006) Size-dependent oxidation mechanism of supported Pd nanoparticles. Angew Chem Int Ed 45:3693–3697. doi:10.1002/anie.200504253

    Article  CAS  Google Scholar 

  40. Vanharde R, Hartog F (1969) Statistics of surface atoms and surface sites on metal crystals. Surf Sci 15:189. doi:10.1016/0039-6028(69)90148-4

    Article  Google Scholar 

  41. Herring C (1951) Some theorems on the free energies of crystal surfaces. Phys Rev 82:87–93. doi:10.1103/PhysRev.82.87

    Article  CAS  Google Scholar 

  42. Qadir K, Joo SH, Mun BS et al (2012) Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS. Nano Lett 12:5761–5768. doi:10.1021/nl303072d

    Article  CAS  Google Scholar 

  43. Hammer B, Norskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220. doi:10.1016/0039-6028(96)80007-0

    Article  CAS  Google Scholar 

  44. Kim D, Resasco J, Yu Y et al (2014) Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat Commun 5:4948. doi:10.1038/ncomms5948

    Article  CAS  Google Scholar 

  45. Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338. doi:10.1038/nmat2156

    Article  CAS  Google Scholar 

  46. Nilekar AU, Alayoglu S, Eichhorn B, Mavrikakis M (2010) Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. J Am Chem Soc 132:7418–7428. doi:10.1021/ja101108w

    Article  CAS  Google Scholar 

  47. Hills CW, Mack NH, Nuzzo RG (2003) The size-dependent structural phase behaviors of supported bimetallic (Pt-Ru) nanoparticles. J Phys Chem B 107:2626–2636. doi:10.1021/jp022182k

    Article  CAS  Google Scholar 

  48. Tao F, Grass ME, Zhang Y et al (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322:932–934. doi:10.1126/science.1164170

    Article  CAS  Google Scholar 

  49. Tao F, Grass ME, Zhang Y et al (2010) Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. J Am Chem Soc 132:8697–8703. doi:10.1021/ja101502t

    Article  CAS  Google Scholar 

  50. Grass ME, Park M, Aksoy F et al (2010) Effect of O-2, CO, and NO on surface segregation in a Rh0.5Pd0.5 bulk crystal and comparison to Rh0.5Pd0.5 nanoparticles. Langmuir 26:16362–16367. doi:10.1021/la101690y

    Article  CAS  Google Scholar 

  51. Musselwhite N, Alayoglu S, Melaet G et al (2013) Isomerization of n-hexane catalyzed by supported monodisperse PtRh bimetallic nanoparticles. Catal Lett 143:907–911. doi:10.1007/s10562-013-1068-5

    Article  CAS  Google Scholar 

  52. Beaumont SK, Alayoglu S, Pushkarev VV et al (2013) Exploring surface science and restructuring in reactive atmospheres of colloidally prepared bimetallic CuNi and CuCo nanoparticles on SiO2 in situ using ambient pressure X-ray photoelectron spectroscopy. Faraday Discuss 162:31–44. doi:10.1039/c2fd20145c

    Article  CAS  Google Scholar 

  53. Alayoglu S, Beaumont SK, Melaet G et al (2013) Surface composition changes of redox stabilized bimetallic CoCu nanoparticles supported on silica under H-2 and O-2 atmospheres and during reaction between CO2 and H-2. In situ X-ray spectroscopic characterization. J Phys Chem C 117:21803–21809. doi:10.1021/jp405745n

    Article  CAS  Google Scholar 

  54. Alayoglu S, Tao F, Altoe V et al (2011) Surface composition and catalytic evolution of Au (x) Pd1-x (x = 0.25, 0.50 and 0.75) nanoparticles under CO/O-2 reaction in torr pressure regime and at 200 A degrees C. Catal Lett 141:633–640. doi:10.1007/s10562-011-0565-7

    Article  CAS  Google Scholar 

  55. Alayoglu S, Beaumont SK, Zheng F et al (2011) CO2 hydrogenation studies on Co and CoPt bimetallic nanoparticles under reaction conditions using TEM, XPS and NEXAFS. Top Catal 54:778–785. doi:10.1007/s11244-011-9695-9

    Article  CAS  Google Scholar 

  56. Zheng F, Alayoglu S, Pushkarev VV et al (2012) In situ study of oxidation states and structure of 4 nm CoPt bimetallic nanoparticles during CO oxidation using X-ray spectroscopies in comparison with reaction turnover frequency. Catal Today 182:54–59. doi:10.1016/j.cattod.2011.10.009

    Article  CAS  Google Scholar 

  57. Carenco S, Tuxen A, Chintapalli M et al (2013) Dealloying of cobalt from CuCo nanoparticles under syngas exposure. J Phys Chem C 117:6259–6266. doi:10.1021/jp4000297

    Article  CAS  Google Scholar 

  58. Rodriguez J, Campbell R, Goodman D (1990) Electronic interactions in bimetallic systems—an X-ray photoelectron spectroscopic study. J Phys Chem 94:6936–6939. doi:10.1021/j100381a004

    Article  CAS  Google Scholar 

  59. Rodriguez J, Campbell R, Goodman D (1991) Electronic interactions in bimetallic systems—Core-level binding-energy shifts. J Vac Sci Technol -Vac Surf Films 9:1698–1702. doi:10.1116/1.577489

    Article  CAS  Google Scholar 

  60. Rodriguez J, Campbell R, Goodman D (1991) Electron-donor electron-acceptor interactions in bimetallic surfaces—theory and XPS studies. J Phys Chem 95:5716–5719. doi:10.1021/j100168a003

    Article  CAS  Google Scholar 

  61. Holgado JP, Ternero F, Gonzalez-delaCruz VM, Caballero A (2013) Promotional effect of the base metal on bimetallic Au-Ni/CeO2 catalysts prepared from core-shell nanoparticles. ACS Catal 3:2169–2180. doi:10.1021/cs400293b

    Article  CAS  Google Scholar 

  62. Gao F, Wang Y, Goodman DW (2009) CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: CO adsorption-Induced surface segregation and reaction kinetics. J Phys Chem C 113:14993–15000. doi:10.1021/jp9053132

    Article  CAS  Google Scholar 

  63. Gao F, Wang Y, Goodman DW (2009) CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: the critical role of contiguous Pd atoms. J Am Chem Soc 131:5734–5735. doi:10.1021/ja9008437

    Article  CAS  Google Scholar 

  64. Zheng F, Alayoglu S, Pushkarev V, et al. (2011) Evolution of oxidation state and structure of Co in Co and Co Pt nanoparticles under the reaction environment. Abstr. Pap. Am. Chem. Soc. 241

  65. Zheng F, Alayoglu S, Guo J et al (2011) In-situ X-ray absorption study of evolution of oxidation states and structure of cobalt in Co and CoPt bimetallic nanoparticles (4 nm) under reducing (H-2) and oxidizing (O-2) environments. Nano Lett 11:847–853. doi:10.1021/nl104209c

    Article  CAS  Google Scholar 

  66. Papaefthimiou V, Dintzer T, Lebedeva M et al (2012) Probing metal-support interaction in reactive environments: an in situ study of PtCo bimetallic nanoparticles supported on TiO2. J Phys Chem C 116:14342–14349. doi:10.1021/jp302320s

    Article  CAS  Google Scholar 

  67. Alayoglu S, An K, Melaet G et al (2013) Pt-mediated reversible reduction and expansion of CeO2 in Pt nanoparticle/mesoporous CeO2 catalyst. In situ X-ray spectroscopy and diffraction studies under redox (H-2 and O-2) atmospheres. J Phys Chem C 117:26608–26616. doi:10.1021/jp407280e

    Article  CAS  Google Scholar 

  68. Zhang C, Grass ME, Yu Y et al (2012) Multielement activity mapping and potential mapping in solid oxide electrochemical cells through the use of operando XPS. Acs Catal 2:2297–2304. doi:10.1021/cs3004243

    Article  CAS  Google Scholar 

  69. An K, Alayoglu S, Musselwhite N et al (2013) Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. J Am Chem Soc 135:16689–16696. doi:10.1021/ja4088743

    Article  CAS  Google Scholar 

  70. Papaefthimiou V, Dintzer T, Dupuis V et al (2011) Nontrivial redox behavior of nanosized cobalt: new insights from ambient pressure X-ray photoelectron and absorption spectroscopies. ACS Nano 5:2182–2190. doi:10.1021/nn103392x

    Article  CAS  Google Scholar 

  71. Niu YH, Yeung LK, Crooks RM (2001) Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles. J Am Chem Soc 123:6840–6846. doi:10.1021/ja0105257

    Article  CAS  Google Scholar 

  72. Vajda S, Pellin MJ, Greeley JP et al (2009) Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater 8:213–216. doi:10.1038/NMAT2384

    Article  CAS  Google Scholar 

  73. Ho J, Ervin K, Lineberger W (1990) Photoelectron-spectroscopy of metal cluster anions—Cun-, Agn-, and Aun-. J Chem Phys 93:6987–7002. doi:10.1063/1.459475

    Article  CAS  Google Scholar 

  74. Hakkinen H, Yoon B, Landman U et al (2003) On the electronic and atomic structures of small Au-N(-) (N = 4-14) clusters: a photoelectron spectroscopy and density-functional study. J Phys Chem A 107:6168–6175. doi:10.1021/jp035437i

    Article  Google Scholar 

  75. Schmid G (1992) Large clusters and colloids—metals in the embryonic state. Chem Rev 92:1709–1727. doi:10.1021/cr00016a002

    Article  CAS  Google Scholar 

  76. Boyen HG, Kastle G, Weigl F et al (2001) Chemically induced metal-to-insulator transition in Au-55 clusters: effect of stabilizing ligands on the electronic properties of nanoparticles. Phys Rev Lett 87:276401. doi:10.1103/PhysRevLett.87.276401

    Article  CAS  Google Scholar 

  77. Mao B-H, Chang R, Shi L et al (2014) A near ambient pressure XPS study of subnanometer silver clusters on Al2O3 and TiO2 ultrathin film supports. Phys Chem Chem Phys 16:26645–26652. doi:10.1039/c4cp02325k

    Article  CAS  Google Scholar 

  78. Roberts FS, Anderson SL, Reber AC, Khanna SN (2015) Initial and final state effects in the ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS) of size-selected Pdn clusters supported on TiO2(110). J Phys Chem C 119:6033–6046. doi:10.1021/jp512263w

    Article  CAS  Google Scholar 

  79. Nemšák S, Shavorskiy A, Karslioglu O et al (2014) Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission. Nat Commun. doi:10.1038/ncomms6441

    Google Scholar 

  80. Crumlin EJ, Bluhm H, Liu Z (2013) In situ investigation of electrochemical devices using ambient pressure photoelectron spectroscopy. J Electron Spectrosc Relat Phenom 190:84–92. doi:10.1016/j.elspec.2013.03.002

    Article  CAS  Google Scholar 

  81. Yuk JM, Park J, Ercius P et al (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336:61–64. doi:10.1126/science.1217654

    Article  CAS  Google Scholar 

  82. Liu B, Yu X-Y, Zhu Z et al (2014) In situ chemical probing of the electrode-electrolyte interface by ToF-SIMS. Lab Chip 14:855–859. doi:10.1039/c3lc50971k

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Catalysis part of this work was funded by the Chemical Sciences Division (CSD) at the Lawrence Berkeley National Laboratory. Instrument part of this work was funded by the Materials Science Division (MSD) at the Lawrence Berkeley National Laboratory. The research in the CSD and MSD; and the user projects in the Advanced Light Source, Molecular Foundry and National Center for Electron Microscopy were supported by the Director, Office of Energy Research, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract DE-AC02-05CH1123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Alayoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alayoglu, S., Somorjai, G.A. Ambient Pressure X-ray Photoelectron Spectroscopy for Probing Monometallic, Bimetallic and Oxide-Metal Catalysts Under Reactive Atmospheres and Catalytic Reaction Conditions. Top Catal 59, 420–438 (2016). https://doi.org/10.1007/s11244-015-0534-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0534-2

Keywords

Navigation