Skip to main content
Log in

Propane Ammoxidation over Mo–V–Te–Nb–O M1 Phase Investigated by DFT: Elementary Steps of Ammonia Adsorption, Activation and NH Insertion into π-Allyl Intermediate

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The selective ammoxidation of propane into acrylonitrile catalyzed by the bulk Mo–V–Te–Nb–O system has received significant attention because it is more environmentally benign than the current process of propene ammoxidation and relies on more abundant propane feedstock. The reaction mechanism is proposed to consist of a series of elementary steps including propane oxidative dehydrogenation, ammonia and O2 activation, and NHx insertion into C3 intermediates. In this study density functional theory calculations have been performed to investigate the energetics of ammonia adsorption and activation in the proposed active center in the ab plane of the M1 phase. The formation of NH x (x = 0, 1, 2, 3) species is found to be highly favored on reduced, oxo-depleted metal sites. The reduced Mo site is determined to be the most favorable site for ammonia activation by comparing the reaction energy profiles for the sequential dehydrogenation of ammonia on the various metal sites. The activation barrier for the initial H abstraction from ammonia was found to depend strongly on the surface sites that stabilize H and NH2, and is as low as 0.28 eV when NH2 is stabilized by the reduced Mo site and H is abstracted by the telluryl oxo group. The subsequent step of surface NH insertion into a π-allyl gas intermediate was also found to have a low activation energy barrier of 0.03 eV on the reduced Mo site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shiju NR, Guliants VV, Overbury SH, Rondinone AJ (2008) ChemSusChem 1:519–523

    Article  CAS  Google Scholar 

  2. Tsuji H, Oshima K, Koyasu Y (2003) Chem Mater 15:2112–2114

    Article  CAS  Google Scholar 

  3. Grasselli RK (2002) Top Catal 21:79–88

    Article  CAS  Google Scholar 

  4. Hatano M, Kayo A (1991) Catalytic conversion of alkanes to nitriles, and a catalyst therefor, U.S Patent 5,049,692

  5. Desanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2004) Z Krist 219:152–165

    CAS  Google Scholar 

  6. Korovchenko P, Shiju NR, Dozier AK, Graham UM, Guerrero-Pérez MO, Guliants VV (2008) Top Catal 50:43–51

    Article  CAS  Google Scholar 

  7. Grasselli RK, Burrington JD, Buttrey DJ, Desanto P, Lugmair CG, Volpe AF, Weingand T (2003) Top Catal 23:5–22

    Article  CAS  Google Scholar 

  8. Grasselli RK, Lugmair CG, Volpe AF (2011) Top Catal 54:595–604

    Article  CAS  Google Scholar 

  9. Grasselli RK, Buttrey DJ, DeSanto P, Burrington JD, Lugmair CG, Volpe AF, Weingand T (2004) Catal Today 91–92:251–258

    Article  Google Scholar 

  10. Chenoweth K, van Duin ACT, Goddard WA III (2009) Angew Chem Int Ed 48:7630–7634

    Article  CAS  Google Scholar 

  11. Goddard WA III, Chenoweth K, Pudar S, van Duin ACT, Cheng M-J (2008) Top Catal 50:2–18

    Article  CAS  Google Scholar 

  12. Goddard WA III, Liu L, Mueller JE, Pudar S, Nielsen RJ (2011) Top Catal 54:659–668

    Article  CAS  Google Scholar 

  13. Goddard WA III, Mueller JE, Chenoweth K, van Duin ACT (2010) Catal Today 157:71–76

    Article  CAS  Google Scholar 

  14. Fu G, Xu X, Sautet P (2012) Angew Chem Int Ed 51:12854–12858

    Article  CAS  Google Scholar 

  15. Muthukumar K, Yu J, Xu Y, Guliants VV (2011) Top Catal 54:605–613

    Article  CAS  Google Scholar 

  16. Govindasamy A, Muthukumar K, Yu J, Xu Y, Guliants VV (2010) J Phys Chem C 114:4544–4549

    Article  CAS  Google Scholar 

  17. Yu J, Xu Y, Guliants VV (2014) Top Catal. doi:10.1016/j.cattod.2014.02.053

  18. Watanabe N, Ueda W (2006) Ind Eng Chem Res 45:607–614

    Article  CAS  Google Scholar 

  19. Grasselli RK (2005) Catal Today 99:23–31

    Article  CAS  Google Scholar 

  20. Rozanska X, Fortrie R, Sauer J (2007) J Phys Chem C 111:6041–6050

    Article  CAS  Google Scholar 

  21. Desanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2003) Top Catal 23:23–38

    Article  CAS  Google Scholar 

  22. Yu J, Woo J, Borisevich A, Xu Y, Guliants VV (2012) Catal Commun 29:68–72

    Article  CAS  Google Scholar 

  23. Perdew J, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  25. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  26. Kresse G, Hafner J (1994) Phys Rev B 49:14251–14268

    Article  CAS  Google Scholar 

  27. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  28. Henkelman G, Jόnsson H (1999) J Chem Phys 111:7010–7021

    Article  CAS  Google Scholar 

  29. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  30. Rojas E, Calatayud M, Guerrero-Pérez MO, Bañares MA (2010) Catal Today 158:178–185

    Article  CAS  Google Scholar 

  31. Yao H, Chen Y, Wei Y, Zhao Z, Liu Z, Xu C (2012) Surf Sci 606:1739–1748

    Article  CAS  Google Scholar 

  32. Gruber M, Hermann K (2013) J Chem Phys 138:194701

    Article  CAS  Google Scholar 

  33. Wachs IE, Jehng J-M, Ueda W (2005) J Phys Chem B 109:2275–2284

    Article  CAS  Google Scholar 

  34. Sundararajan K, Sankaran K, Kavitha V (2008) J Mol Struct 876:240–249

    Article  CAS  Google Scholar 

  35. Grasselli RK, Brazdil JF, Burrington JD (1984) Proc. 3rd Ind. Symp. Ind. Uses Selenium Tellurium. Stockholm, Sweden, p 183

  36. Getsoian AB, Shapovalov V, Bell AT (2013) J Phys Chem C 17:7123–7137

    Article  Google Scholar 

  37. Alexopoulos K, Reyniers M-F, Marin GB (2012) J Catal 295:195–206

    Article  CAS  Google Scholar 

  38. Alexopoulos K, Reyniers M-F, Marin GB (2012) J Catal 289:127–139

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy, under Grant DE-FG02-04ER15604. Part of the DFT studies were performed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory (ORNL) by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The resources of the National Energy Research Scientific Computing Center, supported by DOE Office of Science under Contract DE-AC02-05CH11231, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim V. Guliants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Xu, Y. & Guliants, V.V. Propane Ammoxidation over Mo–V–Te–Nb–O M1 Phase Investigated by DFT: Elementary Steps of Ammonia Adsorption, Activation and NH Insertion into π-Allyl Intermediate. Top Catal 57, 1145–1151 (2014). https://doi.org/10.1007/s11244-014-0280-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0280-x

Keywords

Navigation