Skip to main content
Log in

Cobalt Fischer–Tropsch Catalyst Deactivation Modeled Using Generalized Power Law Expressions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ten sets of deactivation data from five previously reported studies of cobalt Fischer–Tropsch synthesis (FTS) catalysts were found to be modeled well using concentration-independent first and second order generalized power law expressions (GPLEs) which predict that activity approaches a non-zero asymptote. Concentration dependencies of reactants and products were generally not addressed in the model regressions, although selected simulations which incorporated CO, H2, and/or H2O concentrations in deactivation rate equations showed very little or no dependence on concentrations of these species. For reaction temperatures in the range of 220–230 °C, pressures of 15–30 bar, and H2/CO ratios of 1.6–2.6, first order and second order deactivation rate constants average 0.12 ± 0.06 and 0.11 ± 0.05 day−1, respectively. Limiting (asymptotic) activities are largely in the range of 30–40 % of initial activity based on the generally superior extrapolations of second order GPLE. This consistency is impressive considering significant differences among catalyst properties and operating conditions in the five studies that apparently involve different mechanisms of deactivation, including sintering, carbon formation, and/or cobalt aluminate formation. Second order models predict significant longevity for cobalt FTS catalysts; for example, based on the 2nd order models, normalized activities for commercial catalysts in two different pilot slurry reactor facilities are projected to be 56 and 45 % of initial activity after 200 days on stream. For two of the previous studies providing data over periods of 40–55 days, it was possible to identify two different causes of deactivation, one rapid (reaching completion in 10–20 days) and one slow (apparently continuing beyond 40–50 days). A method was developed for calculating first and second order model parameters for the two regions of operation. Rapid activity loss (path 1) is observed for either sintering or Co surface aluminate formation, while poisoning/fouling by deposited carbon or coke (path 2) occurs relatively slowly over the entire process run of 40–55 days and is the dominant mechanism after 10–20 days for both sets of data. The results show that simple GPLE models are surprisingly generally useful for predicting activity versus time behavior of supported cobalt FTS catalysts under typical process conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Farrauto RJ, Bartholomew CH (2006) Fundamentals of industrial catalytic processes, 2nd edn. Wiley-Interscience, Hoboken

    Google Scholar 

  2. Dry ME (1981) In: Anderson JR, Boudart M (eds) Catalysis science and technology, vol 1. Springer, New York, pp 195–255

    Google Scholar 

  3. Dry ME (2004) In: Steynberg A, Dry ME (eds) Studies in surface science and catalysis, vol 152., pp 533–600

    Google Scholar 

  4. Jacobs G, Ma W, Gao P, Todic B, Bhatelia T, Bukur DB, Davis BH (2013) Catal Today 214:100–139

    Article  CAS  Google Scholar 

  5. Tsakoumis NE, Rønning M, Borg O, Rytter E, Holmen A (2010) Catal Today 154:162–182

    Article  CAS  Google Scholar 

  6. Saib AM, Moodley DJ, Ciobica IM, Hauman MM, Sigwebela BH, Weststrate CJ, Niemantsverdriet JW, van de Loosdrecht J (2010) Catal Today 154:271–282

    Article  CAS  Google Scholar 

  7. Moodley DJ, van de Loosdrecht J, Saib AM, Niemantsverdriet JW (2010) In: Davis BH, Occelli ML (eds) Advances in Fischer–Tropsch synthesis, catalysts, and catalysis 312. CRC Press Taylor & Francis Group, Boca Raton, pp 49–81

    Google Scholar 

  8. Dalai AK, Davis BH (2008) Appl Catal A 348:1–15

    Article  CAS  Google Scholar 

  9. Park SJ, Bae JW, Jung G-I, Ha K-S, Jun K-W, Lee Y-J, Park H-G (2012) Appl Catal A 413–414:310–321

    Article  Google Scholar 

  10. Tavasoli A, Karimi S, Taghavi S, Zolfaghari Z, Amirfirouzkouhi H (2012) J Nat Gas Chem 21:605–613

    Article  CAS  Google Scholar 

  11. Tavasoli A, Malek Abbaslou RM, Dalai AK (2008) Appl Catal A 346:58–64

    Article  CAS  Google Scholar 

  12. Storsæter S, Tøtdal B, Walmsley JC, Tanem BS, Holmen A (2005) J Catal 236:139–152

    Article  Google Scholar 

  13. Storsæter S, Borg Ø, Blekkan EA, Holmen A (2005) J Catal 231:405–419

    Article  Google Scholar 

  14. Blekkan EA, Borg Ø, Frøseth V, Holmen A (2007) Catal 20:13–32

    CAS  Google Scholar 

  15. Borg Ø, Storsæter S, Eri S, Wigum H, Rytter E, Holmen A (2006) Catal Lett 107:95–102

    Article  CAS  Google Scholar 

  16. Chen J-G, Xiang H-W, Gao HY, Sun YH (2001) React Kinet Catal Lett 73:169–177

    Article  CAS  Google Scholar 

  17. Bian G-Z, Fujishita N, Mochizuki T, Ning W-S, Yamada M (2003) Appl Catal A 252:251–260

    Article  CAS  Google Scholar 

  18. van Berge PJ, van de Loosdrecht J, Barradas S, van der Kraan AM (2000) Catal Today 58:321–334

    Article  Google Scholar 

  19. van Steen E, Claeys M, Dry ME, van de Loosdrecht J, Viljoen EL, Visagie JL (2005) J Phys Chem B 109:3575–3577

    Article  Google Scholar 

  20. Li J, Jacobs G, Das T, Davis BH (2002) Appl Catal A 233:255–262

    Article  CAS  Google Scholar 

  21. Jacobs G, Das TK, Patterson PM, Li J, Sanchez L, Davis BH (2003) Appl Catal A 247:335–343

    Article  CAS  Google Scholar 

  22. Jacobs G, Zhang Y, Das TK, Li J, Patterson PM, Davis BH (2001) In: Spivey JJ, Roberts GW, Davis BH (eds) Studies in surface science and catalysis, vol 139., pp 423–430

    Google Scholar 

  23. Jacobs G, Patterson PM, Zhang Y, Das TK, Li J, Davis BH (2002) Appl Catal A 233:215–226

    Article  CAS  Google Scholar 

  24. Jacobs G, Das TK, Patterson PM, Luo M, Conner WA, Davis BH (2004) Appl Catal A 270:65–76

    Article  CAS  Google Scholar 

  25. Ma W, Jacobs G, Ji Y, Bhatelia T, Bukur DB, Khalid S, Davis BH (2011) Top Catal 54:757–767

    Article  CAS  Google Scholar 

  26. van de Loosdrecht J, van Berge PJ, Crajé MWJ, van der Kraan AM (2002) Hyperfine Interact 139–140:3–18

    Article  Google Scholar 

  27. Li J, Zhan X, Zhang Y, Jacobs G, Das T, Davis BH (2002) Appl Catal. A 228:203–212

    CAS  Google Scholar 

  28. Huber GW, Guymon CG, Conrad TL, Stephenson BC, Bartholomew CH (2001) In: Spivey JJ, Roberts GW, Davis BH (eds) Studies in surface science and catalysis, vol 139., pp 423–430

    Google Scholar 

  29. Hilmen AM, Lindvåg OA, Bergene E, Schanke D, Eri S, Holmen A (2001) In: Fleisch TH, Iglesia E, Spivey JJ (eds) Studies in surface science and catalysis, vol 136., pp 295–300

    Google Scholar 

  30. Hilmen AM, Schanke D, Hanssen KF, Holmen A (1999) Appl Catal A 186:169–188

    Article  CAS  Google Scholar 

  31. Schanke D, Hilmen AM, Bergene E, Kinnari K, Rytter E, Ådnanes E, Holmen A (1996) Energy Fuels 10:867–872

    Article  CAS  Google Scholar 

  32. Schanke D, Hilmen AM, Bergene E, Kinnari K, Rytter E, Ådnanes E, Holmen A (1995) Catal Lett 34:269–284

    Article  CAS  Google Scholar 

  33. Kiss G, Kliewer CE, DeMartin GJ, Culross CC, Baumgartner JE (2003) J Catal 217:127–140

    CAS  Google Scholar 

  34. Kogelbauer A, Weber JC, Goodwin JG Jr (1995) Catal Lett 34:259–267

    Article  CAS  Google Scholar 

  35. Moodley DJ, Saib AM, van de Loosdrecht J, Welker-Nieuwoudt CA, Sigwebela BH, Niemantsverdriet JW (2011) Catal Today 171:192–200

    Article  CAS  Google Scholar 

  36. Tsakoumis NE, Voronov A, Ronning M, van Beck W, Borg O, Rytter E, Holmen A (2012) J Catal 291:138–148

    Article  CAS  Google Scholar 

  37. Jacobs G, Sarkar A, Ji Y, Patterson PM, Das TK, Luo M, Davis BH (2006) Fischer–Tropsch synthesis: characterization of interactions between reduction promoters and Co for Co/Al2O3-based GTL catalysts, Session 616c, AIChE annual meeting proceedings

  38. Das TK, Jacobs G, Patterson PM, Conner WA, Davis BH (2003) Fuel 82:805–815

    Article  CAS  Google Scholar 

  39. Sirijaruphan A, Horvath A, Goodwin JG Jr, Oukaci R (2003) Catal Lett 91:89–94

    Article  CAS  Google Scholar 

  40. Pena D, Griboval-Constant A, Diehl F, Lecocq V, Khodakov AY (2013) ChemCatChem 5:728–731

    Article  CAS  Google Scholar 

  41. Sadeqzadeh M, Chambrey S, Piche S, Fongarland P, Luck F, Curulla-Ferre D, Schweich D, Bousquet J, Khodakov AY (2013) Catal Today 215:52–59

    Article  CAS  Google Scholar 

  42. Karaca H, Hong J, Fongarland P, Roussel P, Griboval-Constant A, Lacroix M, Hortmann K, Safonova OV, Khodakov AY (2010) Chem Comm 46:788–790

    Article  CAS  Google Scholar 

  43. Bezemer GL, Remans TJ, van Bavel AP, Dugulan AI (2010) J Am Chem Soc 132:8540–8541

    Article  CAS  Google Scholar 

  44. den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Froeseth V, Holmen A, de Jong KP (2009) J Am Chem Soc 131:7197–7203

    Article  Google Scholar 

  45. Bezemer GL, Herman JH, Kuipers PCE, Oosterbeek H, Holewign JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  46. Pinard L, Bichon P, Popov A, Lemberton JL, Canaff C, Mauge F, Bazin P, Falabella E, Aguiar S, Magnoux P (2011) Appl Catal A 406:73–80

    Article  CAS  Google Scholar 

  47. Gruver V, Young R, Engman J, Robota HJ (2005) Prepr Pap Am Chem Soc Div Petrol Chem 50:164–166

    CAS  Google Scholar 

  48. Weststrate CJ, Kizilkaya AC, Rossen ETR, Verhoeven MWGM, Ciobica IM, Saib AM, Niemantsverdriet JW (2012) J Phys Chem C 116:11575–11583

    Article  CAS  Google Scholar 

  49. Hauman MM, Saib AM, Moodley DJ, du Plessis E, Claeys M, van Steen E (2012) Chem Cat Chem 4:1411–1419

    CAS  Google Scholar 

  50. van de Loosdrecht J, Balzhinimaev B, Dalmon J-A, Niemantsverdriet JW, Tsybulya SV, Saib AM, van Berge PJ, Visagie JL (2007) Catal Today 123:293–302

    Article  Google Scholar 

  51. Moodley DJ, van de Loosdrecht J, Saib AM, Overett MJ, Datye AK, Niemantsverdriet JW (2009) Appl Catal A 354:102–110

    Article  CAS  Google Scholar 

  52. Saib AM, Borgna A, van de Loosdrecht J, van Berge PJ, Niemantsverdriet JW (2006) J Phys Chem B 110:8657–8664

    Article  CAS  Google Scholar 

  53. Saib AM, Borgna A, van de Loosdrecht J, van Berge PJ, Niemantsverdriet JW (2006) Appl Catal A 312:12–19

    Article  CAS  Google Scholar 

  54. Weststrate CJ, Hauman MM, Moodley DJ, Saib AM, van Steen E, Niemantsverdriet JW (2011) Top Catal 54:811–816

    Article  CAS  Google Scholar 

  55. Qin Q, Ramkrishna D (2004) Ind Eng Chem Res 43:2912–2921

    Article  CAS  Google Scholar 

  56. Zhou W, Chen JG, Fang KG, Sun YH (2006) Fuel Proc Tech 87:609–616

    Article  CAS  Google Scholar 

  57. Bremaud M, Fongarland P, Anfray J, Jallais S, Schweich D, Khodakov AY (2005) Catal Today 106:137–142

    Article  CAS  Google Scholar 

  58. Sadeqzadeh M, Hong J, Fongarland P, Curulla-Ferré D, Luck F, Bousquet J, Schweich D, Khodakov AY (1964) Ind Eng Chem Res 51(2012):11955–11964

    Google Scholar 

  59. Fuentes GA (1985) Appl Catal 15:33–40

    Article  CAS  Google Scholar 

  60. Bartholomew CH (1997) In: Bartholomew CH, Fuentes GA (eds) Studies in surface science and catalysis, vol 111., pp 585–592

    Google Scholar 

  61. Bartholomew CH (1994) In: Delmon B, Froment GF (eds) Studies in surface science and catalysis, vol 88., pp 1–18

    Google Scholar 

  62. Bartholomew CH (1993) Appl Catal A 107:1–57

    Article  CAS  Google Scholar 

  63. Agee K, Syntroleum data, National Energy Technology Laboratory White Paper, www.b2i.cc/Document/2029/White_Paper_Text_Eastman.pdf. Accessed 12 Aug 2013

  64. Eliason SA, Bartholomew CH (1999) Appl Catal A 186:229–243

    Article  CAS  Google Scholar 

  65. Overett MJ, Breedt B, du Plessis E, Erasmus W, van de Loosdrecht J (2008) Prepr Papers Am Chem Soc Div Petrol Chem 53:126–128

    CAS  Google Scholar 

  66. Beitel GA, de Groot CPM, Oosterbeek H, Wilson JH (1997) J Phys Chem B 101:4035–4043

    Article  CAS  Google Scholar 

  67. Wilson J, de Groot C (1995) J Phys Chem 99:7860–7866

    Article  CAS  Google Scholar 

  68. Parkinson GS, Novotny Z, Argentero G, Schmid M, Pavelec J, Kosak R, Blaha P, Diebold U (2013) Nat Mater 12:724–728

    Article  CAS  Google Scholar 

  69. Lide DR (ed) (1992) CRC handbook of chemistry and physics, 73rd edn. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Bartholomew.

Appendix

Appendix

An analogous form of Eq. 1 can be written specifically to describe sintering, as follows:

$$- \frac{{d\left( {\frac{D}{{D_{0} }}} \right)}}{dt} = k_{s} \left( {\frac{D}{{D_{0} }} - \frac{{D_{eq} }}{{D_{0} }}} \right)^{m}$$
(7)

where D is the metal dispersion as a function of time, D0 is the initial dispersion, Deq is the dispersion at long times (equilibrium), ks is the sintering rate constant, and m is the order of the sintering process.

Assuming concentration independence of the deactivation rate, the solution to Eq. 7 for first order (d = 1) deactivation process is of the form:

$$\frac{D(t)}{{D_{0} }} = \left( {1 - \frac{{D_{eq} }}{{D_{0} }}} \right)\exp \left( { - k_{s1} t} \right) + \frac{{D_{eq} }}{{D_{0} }}$$
(8)

while for Eq. 2 with second order deactivation (m = 2), the solution is

$$\frac{D(t)}{{D_{0} }} = \left( {k_{s2} t - \left(1 - \frac{{D_{eq} }}{{D_{0} }}\right)^{ - 1} } \right)^{ - 1} + \frac{{D_{eq} }}{{D_{0} }}$$
(9)

The assumption of the concentration independence of the deactivation rate for a thermal sintering process is justified since this is typically only a function of temperature. However, the temperatures used in most FT reactors are generally below any expected mobility due to thermal effects, at least as determined by heuristics such as the Tamman and Hüttig temperatures, respectively defined as 0.5 and 0.3 of the melting point (Tm) of the material. Near the Hüttig temperature, atoms at defects will become mobile, while near the Tamman temperature, bulk atoms begin to be mobile. Since Tm for cobalt metal is 1,495 °C [69], Tamman and Hüttig temperatures are 611 °C (0.5Tm = 884 K) and 257 °C (0.3Tm = 530 K) respectively. Hüttig and Tamman temperatures are defined for bulk materials; clearly, surface thermodynamic properties for dispersed nanoparticles are different compared to the bulk, although defects and surfaces may have some similarities. Since the Hüttig temperature is 257 °C and reactor temperatures commonly associated with cobalt FT catalysis of 200–230 °C are significantly lower, thermal sintering is not likely to be a major deactivation mechanism under FTS conditions. Rather, sintering caused by adsorbate–surface interactions that we refer to here as chemical-assisted sintering are more likely to explain the observed sintering. Chemical-assisted sintering of Ni/alumina catalysts in methanation due to formation of volatile Ni(CO)4 followed by its decomposition downstream to large Ni crystallites has been well documented [1-Ch.5, 62]. Similarly, formation of volatile or mobile surface carbonyl species, (Co2(CO)8, or mobile Co(OH)x surface species [41, 42] could similarly explain sintering of Co catalysts during FTS, although these species would probably be thermally unstable at typical reaction temperatures [69]) and would hence be short-lived. Wilson and de Groot [67] reported that under high pressure (4 bar, H2/CO = 2) and moderate temperature (523 K) conditions, single crystal Co (0001) surfaces restructured significantly due to interaction with the CO. More recently, Parkinson et al. [68] have shown that chemical-assisted sintering occurs at room temperature for palladium supported on magnetite under ultra-high vacuum conditions at a CO partial pressure of only 5 × 10−10 mbar. However, as previously discussed, most of the GPLE deactivation models in this paper are not significantly improved by including reactant or product concentrations. This insensitivity is possibly due to the partial pressure of CO under reaction conditions greatly exceeding that needed to saturate the available surface with Co carbonyls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyle, M.D., Frost, T.S. & Bartholomew, C.H. Cobalt Fischer–Tropsch Catalyst Deactivation Modeled Using Generalized Power Law Expressions. Top Catal 57, 415–429 (2014). https://doi.org/10.1007/s11244-013-0197-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0197-9

Keywords

Navigation