Skip to main content
Log in

Propane Ammoxidation Over the Mo–V–Te–Nb–O M1 Phase: Reactivity of Surface Cations in Hydrogen Abstraction Steps

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Density functional theory calculations (GGA-PBE) have been performed to investigate the adsorption of C3 (propane, isopropyl, propene, and allyl) and H species on the proposed active center present in the surface ab planes of the bulk Mo–V–Te–Nb–O M1 phase in order to better understand the roles of the different surface cations in propane ammoxidation. Modified cluster models were employed to isolate the closely spaced V=O and Te=O from each other and to vary the oxidation state of the V cation. While propane and propene adsorb with nearly zero adsorption energy, the isopropyl and allyl radicals bind strongly to V=O and Te=O with adsorption energies, ΔE, being ≤−1.75 eV, but appreciably more weakly on other sites, such as Mo=O, bridging oxygen (Mo–O–V and Mo–O–Mo), and empty metal apical sites (ΔE > −1 eV). Atomic H binds more strongly to Te=O (ΔE ≤ −3 eV) than to all the other sites, including V=O (ΔE = −2.59 eV). The reduction of surface oxo groups by dissociated H and their removal as water are thermodynamically favorable except when both H atoms are bonded to the same Te=O. Consistent with the strong binding of H, Te=O is markedly more active at abstracting the methylene H from propane (E a  ≤ 1.01 eV) than V=O (E a  = 1.70 eV on V5+=O and 2.13 eV on V4+=O). The higher-than-observed activity and the loose binding of Te=O moieties to the mixed metal oxide lattice of M1 raise the question of whether active Te=O groups are in fact present in the surface ab planes of the M1 phase under propane ammoxidation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grasselli RK (2002) Top Catal 21:79

    Article  CAS  Google Scholar 

  2. Shiju NR, Guliants VV (2009) Appl Catal A Gen 356:1

    Article  CAS  Google Scholar 

  3. Hatano M, Kayou A (1988) European Patent 318295

  4. Hatano M, Kayou A (1991) US Patent 5049692

  5. Ushikubo T, Oshima K, Kayou A, Vaarkamp M, Hatano M (1997) J Catal 169:394

    Article  CAS  Google Scholar 

  6. Grasselli RK, Buttrey DJ, DeSanto P, Burrington JD, Lugmair CG, Volpe AF, Weingand T (2004) Catal Today 91–92:251

    Article  Google Scholar 

  7. DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Togy BH, Vogt T (2003) Top Catal 23:23

    Article  CAS  Google Scholar 

  8. Watanabe N, Ueda W (2006) Ind Eng Chem Res 45:607

    Article  CAS  Google Scholar 

  9. Shiju NR, Guliants VV (2007) ChemPhysChem 8:1615

    Article  CAS  Google Scholar 

  10. Sadakane M, Kodato K, Kuranishi T, Nodasaka Y, Sugawara K, Sakaguchi N, Nagai T, Matsui Y, Ueda W (2008) Angew Chem Int Ed 47:2493

    Article  CAS  Google Scholar 

  11. Ueda W, Sadakane M, Ogihara H (2008) Catal Today 132:2

    Article  CAS  Google Scholar 

  12. Kubo J, Watannabe N, Ueda W (2008) Chem Eng Sci 63:1648

    CAS  Google Scholar 

  13. Holmberg J, Grasselli RK, Andersson A (2004) Appl Catal A Gen 270:121

    Article  CAS  Google Scholar 

  14. Grasselli RK (2005) Catal Today 99:23

    Article  CAS  Google Scholar 

  15. Baca M, Aouine M, Dubois JL, Millet JMM (2005) J Catal 233:234

    Article  CAS  Google Scholar 

  16. Korovchenko P, Shiju NR, Dozier AK, Graham UM, Guerrero-Perez MO, Guliants VV (2008) Top Catal 50:43

    Article  CAS  Google Scholar 

  17. Shiju NR, Guliants VV, Overbury SH, Rondinone AJ (2008) ChemSusChem 1:519

    Article  CAS  Google Scholar 

  18. DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2004) Z Kristallogr 219:152

    Article  CAS  Google Scholar 

  19. Shiju NR, Rondinone AJ, Mullins DR, Schwartz V, Overbury SH, Guliants VV (2008) Chem Mater 20:6611

    Article  CAS  Google Scholar 

  20. Pyrz WD, Blom DA, Vogt T, Buttrey DJ (2008) Angew Chem Int Ed 47:2788

    Article  CAS  Google Scholar 

  21. Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P, Lugmair CG, Volpe AF, Weingand T (2003) Top Catal 23:5

    Article  CAS  Google Scholar 

  22. Shiju NR, Kale RR, Iyer SS, Guliants VV (2007) J Phys Chem C 111:18001

    Article  CAS  Google Scholar 

  23. Deo G, Wachs IE (1994) J Catal 146:323

    Article  CAS  Google Scholar 

  24. Burcham LJ, Deo G, Gao XT, Wachs IE (2000) Top Catal 11:85

    Article  Google Scholar 

  25. Magg N, Immaraporn B, Giorgi JB, Schroeder T, Baumer M, Dobler J, Wu ZL, Kondratenko E, Cherian M, Baerns M, Stair PC, Sauer J, Freund HJ (2004) J Catal 226:88

    Article  CAS  Google Scholar 

  26. Kim HS, Zygmunt SA, Stair PC, Zapol P, Curtiss LA (2009) J Phys Chem C 113:8836

    Article  CAS  Google Scholar 

  27. Khodakov A, Olthof B, Bell AT, Iglesia E (1999) J Catal 181:205

    Article  CAS  Google Scholar 

  28. Zboray M, Bell AT, Iglesia E (2009) J Phys Chem C 113:12380

    Article  CAS  Google Scholar 

  29. Goddard WA, Chenoweth K, Pudar S, van Duin ACT, Cheng M-J (2008) Top Catal 50:2

    Article  CAS  Google Scholar 

  30. Chenoweth K, van Duin ACT, Goddard WA (2009) Angew Chem Int Ed 48:7630

    Article  CAS  Google Scholar 

  31. Govindasamy A, Muthukumar K, Yu JJ, Xu Y, Guliants VV (2010) J Phys Chem C 114:4544

    Article  CAS  Google Scholar 

  32. Rozanska X, Fortrie R, Sauer J (2007) J Phys Chem C 111:6041

    Article  CAS  Google Scholar 

  33. Fu H, Liu Z-P, Li Z-H, Wang W-N, Fan K-N (2006) J Am Chem Soc 128:11114

    Article  CAS  Google Scholar 

  34. Rozanska X, Sauer J (2008) Int J Quantum Chem 108:2223

    Article  CAS  Google Scholar 

  35. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  36. Kresse G, Hafner J (1994) Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  37. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  38. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  39. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  40. Rozanska X, Sauer J (2009) J Phys Chem A 113:11586

    Article  CAS  Google Scholar 

  41. Goodrow A, Bell AT (2007) J Phys Chem C 111:14753

    Article  CAS  Google Scholar 

  42. Goodrow A, Bell AT (2008) J Phys Chem C 112:13204

    Article  CAS  Google Scholar 

  43. Jang YH, Goddard WA (2002) J Phys Chem B 106:5997

    Article  CAS  Google Scholar 

  44. Henkelman G, Jónsson H (2000) J Chem Phys 113:9978

    Article  CAS  Google Scholar 

  45. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  46. Henkelman G, Jónsson H (1999) J Chem Phys 111:7010

    Article  CAS  Google Scholar 

  47. Olsen RA, Kroes GJ, Henkelman G, Arnaldsson A, Jónsson H (2004) J Chem Phys 121:9776

    Article  CAS  Google Scholar 

  48. Heyden A, Bell AT, Keil FJ (2005) J Chem Phys 123:224101

    Article  Google Scholar 

  49. McWhan DB, Marezio M, Remeika JP, Dernier PD (1974) Phys Rev B 10:490

    Article  CAS  Google Scholar 

  50. Bachmann HG, Ahmed FR, Barnes WH (1961) Z Kristallogr 115:110

    Article  CAS  Google Scholar 

  51. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  52. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354

    Article  Google Scholar 

  53. Guimond S, Abu Haija M, Kaya S, Lu J, Weissenrieder J, Shaikhutdinov S, Kuhlenbeck H, Freund HJ, Dobler J, Sauer J (2006) Top Catal 38:117

    Article  CAS  Google Scholar 

  54. Wei HY, Lin J, Huang WH, Feng ZB, Li DW (2009) Mater Sci Eng B Adv 164:51

    Article  CAS  Google Scholar 

  55. Sundararajan K, Sankaran K, Kavitha V (2008) J Mol Struct 876:240

    Article  CAS  Google Scholar 

  56. Cheng MJ, Chenoweth K, Oxgaard J, van Duin A, Goddard WA (2007) J Phys Chem C 111:5115

    Article  CAS  Google Scholar 

  57. Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2008) J Am Chem Soc 131:816

    Article  Google Scholar 

  58. Kämper A, Auroux A, Baerns M (2000) Phys Chem Chem Phys 2:1069

    Article  Google Scholar 

  59. Bart JCJ, Giordano N (1980) J Catal 64:356

    Article  CAS  Google Scholar 

  60. Chen KD, Bell AT, Iglesia E (2000) J Phys Chem B 104:1292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under grant no. DE-FG02-04ER15604. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. We gratefully acknowledge National Energy Research Scientific Computing Center and Ohio Supercomputing Center for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye Xu or Vadim V. Guliants.

Additional information

Dedicated to the 80th birthday of Professor Robert K. Grasselli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthukumar, K., Yu, J., Xu, Y. et al. Propane Ammoxidation Over the Mo–V–Te–Nb–O M1 Phase: Reactivity of Surface Cations in Hydrogen Abstraction Steps. Top Catal 54, 605–613 (2011). https://doi.org/10.1007/s11244-011-9682-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9682-1

Keywords

Navigation