Skip to main content
Log in

Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Gold particles supported on carbon and titania were explored as catalysts for oxidation of CO or glycerol by O2 at room temperature in liquid-phase water. Although Au/carbon catalysts were not active for vapor phase CO oxidation at room temperature, a turnover frequency of 5 s−1 could be achieved with comparable CO concentration in aqueous solution containing 1 M NaOH. The turnover frequency on Au/carbon was a strong function of pH, decreasing by about a factor of 50 when the pH decreased from 14 to 0.3. Evidently, a catalytic oxidation route that was not available in the vapor phase is enabled by operation in the liquid water at high pH. Since Au/titania is active for vapor phase CO oxidation, the role of water, and therefore hydroxyl concentration, is not as significant as that for Au/carbon. Hydrogen peroxide is also produced during CO oxidation over Au in liquid water and increasing the hydroxyl concentration enhances its formation rate. For glycerol oxidation to glyceric acid (C3) and glycolic acid (C2) with O2 (1–10 atm) at 308–333 K over supported Au particles, high pH is required for catalysis to occur. Similar to CO oxidation in liquid water, H2O2 is also produced during glycerol oxidation at high pH. The formation of the C-C cleavage product glycolic acid is attributed to peroxide in the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.C. Bond C. Louis D.T. Thompson (2006) Catalysis by Gold Imperial College Press London

    Google Scholar 

  2. R. Meyer C. Lemire K. Sh. Shaikhutdinov H.-J. Freund (2004) Gold Bull. 37 72 Occurrence Handle1:CAS:528:DC%2BD2cXnt1emsLg%3D

    CAS  Google Scholar 

  3. J.T. Calla R.J. Davis (2005) Ind. Eng. Chem. Res. 44 5403 Occurrence Handle10.1021/ie0492202 Occurrence Handle1:CAS:528:DC%2BD2MXht1OlsLY%3D

    Article  CAS  Google Scholar 

  4. C.K. Costello J.H. Yang H.Y. Law Y. Wang J.-N. Lin L.D. Marks M.C. Kung H.H. Kung (2003) Appl. Catal. A 243 15 Occurrence Handle10.1016/S0926-860X(02)00533-1 Occurrence Handle1:CAS:528:DC%2BD3sXitVyrs7k%3D

    Article  CAS  Google Scholar 

  5. M. Date M. Okumura S. Tsubota M. Haruta (2004) Angew. Chem.Int. Ed. 43 2129 Occurrence Handle10.1002/anie.200453796 Occurrence Handle1:CAS:528:DC%2BD2cXjsFSjsb8%3D

    Article  CAS  Google Scholar 

  6. M. Date M. Haruta (2001) J. Catal. 201 221 Occurrence Handle10.1006/jcat.2001.3254 Occurrence Handle1:CAS:528:DC%2BD3MXkvF2jsb4%3D

    Article  CAS  Google Scholar 

  7. M.A. Sanchez-Castillo C. Couto W.B. Kim J.A. Dumesic (2004) Angew. Chem. Int. Ed. 43 1140 Occurrence Handle10.1002/anie.200353238 Occurrence Handle1:CAS:528:DC%2BD2cXitV2hsLo%3D

    Article  CAS  Google Scholar 

  8. W.B. Kim T. Voitl G.J. Rodriquez-Rivera J.A. Dumesic (2004) Science 305 1280 Occurrence Handle15333837 Occurrence Handle10.1126/science.1100860 Occurrence Handle1:CAS:528:DC%2BD2cXmvFCitrY%3D Occurrence Handle2004Sci...305.1280K

    Article  PubMed  CAS  ADS  Google Scholar 

  9. W.B. Kim G.J. Rodriquez-Rivera S.T. Evans T. Voitl J.J. Einspahr P.M. Voyles J.A. Dumesic (2005) J. Catal. 235 327 Occurrence Handle10.1016/j.jcat.2005.06.003 Occurrence Handle1:CAS:528:DC%2BD2MXhtVOht7%2FL

    Article  CAS  Google Scholar 

  10. W.B. Kim T. Voitl G.J. Rodriquez-Rivera S.T. Evans J.A. Dumesic (2005) Angew. Chem. Int. Ed. 44 778 Occurrence Handle10.1002/anie.200461601 Occurrence Handle1:CAS:528:DC%2BD2MXhtVagurg%3D

    Article  CAS  Google Scholar 

  11. L. Prati F. Porta (2005) Appl. Catal. A 291 199 Occurrence Handle10.1016/j.apcata.2004.11.050 Occurrence Handle1:CAS:528:DC%2BD2MXosVWqu7k%3D

    Article  CAS  Google Scholar 

  12. S. Biella G.L. Castiglioni C. Fumagalli L. Prati M. Rossi (2002) Catal. Today 72 43 Occurrence Handle10.1016/S0920-5861(01)00476-X Occurrence Handle1:CAS:528:DC%2BD38XisV2jtLg%3D

    Article  CAS  Google Scholar 

  13. L. Prati M. Rossi (1998) J. Catal. 176 552 Occurrence Handle10.1006/jcat.1998.2078 Occurrence Handle1:CAS:528:DyaK1cXjvFemsr0%3D

    Article  CAS  Google Scholar 

  14. S. Carrettin, P. McMorn, P. Johnston, K. Griffin and G.J. Hutchings, Chem. Comm. (2002) 696.

  15. F. Porta L. Prati (2004) J. Catal. 224 397 Occurrence Handle10.1016/j.jcat.2004.03.009 Occurrence Handle1:CAS:528:DC%2BD2cXjvVGis7s%3D

    Article  CAS  Google Scholar 

  16. S. Carrettin P. McMorn P. Johnston K. Griffin C. Kiely G.A. Attard G.J. Hutchings (2004) Topics Catal. 27 131 Occurrence Handle10.1023/B:TOCA.0000013547.35106.0d Occurrence Handle1:CAS:528:DC%2BD2cXntleksw%3D%3D

    Article  CAS  Google Scholar 

  17. S. Demirel-Gulen M. Lucas P. Claus (2005) Catal. Today 102–103 166 Occurrence Handle10.1016/j.cattod.2005.02.033

    Article  Google Scholar 

  18. L. Prati G. Martra (1999) Gold Bull. 32 96 Occurrence Handle1:CAS:528:DC%2BD3cXnt1ejsw%3D%3D

    CAS  Google Scholar 

  19. R. Holliday, Data sheets accompanying gold reference catalysts

  20. T. Ressler. WinXAS 2.33, ed., (Berlin, 2001)

  21. D.C. Koningsberger B.L. Mojet G.E. Dorseen Particlevan D.E. Ramaker (2000) Topics Catal. 10 143 Occurrence Handle10.1023/A:1019105310221 Occurrence Handle1:CAS:528:DC%2BD3cXjslequrs%3D

    Article  CAS  Google Scholar 

  22. B. Maier C. Dietrich J. Buchs (2001) Trans. IChemE 79 107 Occurrence Handle1:CAS:528:DC%2BD3MXmtVyntb8%3D

    CAS  Google Scholar 

  23. C.N. Satterfield A.H. Bonnell (1955) Anal. Chem. 27 1174 Occurrence Handle10.1021/ac60103a042 Occurrence Handle1:CAS:528:DyaG2MXntlSmuw%3D%3D

    Article  CAS  Google Scholar 

  24. J.T. Miller A.J. Kropf Y. Zha J.R. Regalbuto L. Delannoy C. Louis E. Bus J.A. Bokhoven Particlevan (2006) J. Catal. 240 222 Occurrence Handle10.1016/j.jcat.2006.04.004 Occurrence Handle1:CAS:528:DC%2BD28XksFaqt7s%3D

    Article  CAS  Google Scholar 

  25. A. Jentys (1999) Phys. Chem. Chem. Phys. 1 4059 Occurrence Handle10.1039/a904654b Occurrence Handle1:CAS:528:DyaK1MXltlyntb8%3D

    Article  CAS  Google Scholar 

  26. J.T. Calla M.T. Bore A.K. Datye R.J. Davis (2006) J. Catal. 238 458 Occurrence Handle10.1016/j.jcat.2006.01.009 Occurrence Handle1:CAS:528:DC%2BD28Xht1ylsb0%3D

    Article  CAS  Google Scholar 

  27. W.F. Linke (1958) Solubilities; Inorganic and Metal-Organic Compounds American Chemical Society Washington, D.C

    Google Scholar 

  28. L.M. Liu B. McAllister H.Q. Ye P. Hu (2006) J. Am. Chem. Soc. 128 4017 Occurrence Handle16551110 Occurrence Handle10.1021/ja056801p Occurrence Handle1:CAS:528:DC%2BD28XhvF2is7c%3D

    Article  PubMed  CAS  Google Scholar 

  29. M. Okumura Y. Kitagawa K. Yamagcuhi T. Akita S. Tsubota M. Haruta (2003) Chem. Lett. 32 822 Occurrence Handle10.1246/cl.2003.822 Occurrence Handle1:CAS:528:DC%2BD3sXnt1WnsrY%3D

    Article  CAS  Google Scholar 

  30. G. Li J. Edwards A.F. Carley G.J. Hutchings (2006) Catal. Today 114 369 Occurrence Handle10.1016/j.cattod.2006.02.070 Occurrence Handle1:CAS:528:DC%2BD28XksFaksro%3D

    Article  CAS  Google Scholar 

  31. Z.-L. Ma S.-H. Jiang L. Zhang C.-Q. Liu (2006) Appl. Catal. A 311 34 Occurrence Handle10.1016/j.apcata.2006.05.036 Occurrence Handle1:CAS:528:DC%2BD28XotlWmsrs%3D

    Article  CAS  Google Scholar 

  32. A. Bongiorno U. Landman (2005) Phys. Rev. Lett. 95 106102 Occurrence Handle16196944 Occurrence Handle10.1103/PhysRevLett.95.106102 Occurrence Handle2005PhRvL..95j6102B

    Article  PubMed  ADS  Google Scholar 

  33. B.B. Blizanac C.A. Lucas M.E. Gallagher M. Arenz P.N. Ross N.M. Markovic (2004) J. Phys. Chem. B 108 625 Occurrence Handle10.1021/jp036483l Occurrence Handle1:CAS:528:DC%2BD3sXps1Gls7Y%3D

    Article  CAS  Google Scholar 

  34. CRC Handbook of Chemistry and Physics, 71 ed., (CRC Press, Boca Raton, 2006)

  35. P. Ritter (1996) Biochemistry; A Foundation Brooks/Cole Publishing Company Pacific Grove, CA

    Google Scholar 

  36. P.A. Shaffer T.E. Friedemann (1930) J. Biol. Chem. 86 345 Occurrence Handle1:CAS:528:DyaA3cXjt1yisA%3D%3D

    CAS  Google Scholar 

  37. R.W. Nagorski J.P. Richard (1996) J. Am. Chem. Soc. 118 7432 Occurrence Handle10.1021/ja961259d Occurrence Handle1:CAS:528:DyaK28XksFKhtL8%3D

    Article  CAS  Google Scholar 

  38. P. Landon P.J. Collier A.F. Carley D. Chadwick A.J. Papworth A. Burrows C.J. Kiely G.J. Hutchings (2003) Phys. Chem. Chem. Phy. 5 1917 Occurrence Handle1:CAS:528:DC%2BD3sXivFGksr4%3D

    CAS  Google Scholar 

  39. H.S. Isbell H.L. Frush E.T. Martin (1973) Carbohyd. Res. 26 287 Occurrence Handle10.1016/S0008-6215(00)84515-2 Occurrence Handle1:CAS:528:DyaE3sXhtlKmtrg%3D

    Article  CAS  Google Scholar 

  40. H.G.J. Wilt ParticleDe B.F.M. Kuster (1971) Carbohyd. Res. 19 5 Occurrence Handle10.1016/S0008-6215(00)80307-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ketchie, W.C., Murayama, M. & Davis, R.J. Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top Catal 44, 307–317 (2007). https://doi.org/10.1007/s11244-007-0304-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-0304-x

Keywords

Navigation