Skip to main content
Log in

Electrochemistry of nickel(II) and copper(II) N,N′-ethylenebis(acetylacetoniminato) complexes and their electrocatalytic activity for reduction of carbon dioxide and carboxylic acid protons

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The effect of the metal center of [ML] complexes [M = Ni(II), Cu(II); L = N,N′-ethylenebis(acetylacetoniminato)] on their electrochemistry and electrocatalytic activity for the reduction of CO2 and protons has been studied using cyclic voltammetry and bulk electrolysis. The two complexes exhibit different electrochemistries, which are not significantly dependent on the nature of the solvent. The electrocatalytic activity of [NiL] is significantly higher than that of [CuL] for CO2 reduction, due to the higher stability of the electrochemically generated [Ni(I)L] complex, relative to the Cu(I) analog. The diffusion coefficient of [NiL] calculated from the steady-state diffusion limiting current is 3.0 × 10−6 cm2 s−1. The catalytic efficiency of [NiL] in non-aqueous solvents in terms of i p(CO2)/i p(N2) per nickel center is smaller than that of [Ni(cyclam)]2+, but greater than those of sterically hindered mononuclear [Ni(1,3,6,8,10, 13,15-heptaazatricyclo(11.3.1.1) octadecane)]2+ or multinuclear [Ni3 (X)]6+ where X = 8,8′,8″-{2,2′,2″(-nitrilotriethyl)-tris(1,3,6,8,10,13,15-heptaazatricyclo(11.3.1.1) octadecane}. Both [NiL] and [CuL] are also electrocatalysts for the reduction of carboxylic acid protons, with the catalytic pathway being different for acetic and trifluoroacetic acids in MeCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. Fisher BJ, Eisenberg R (1980) J Am Chem Soc 102:7361–7363

    Article  CAS  Google Scholar 

  2. Fujita E, Szalda DJ, Creutz C, Sutin N (1988) J Am Chem Soc 110:4870–4871

    Article  CAS  Google Scholar 

  3. Fujita E, Creutz C, Sutin N, Szalda DJ (1991) J Am Chem Soc 113:343–353

    Article  CAS  Google Scholar 

  4. Olson DC, Vasilevskis J (1971) Inorg Chem 10:463–470

    Article  CAS  Google Scholar 

  5. Mochizuki K, Manaka S, Takeda I, Kondo T (1996) Inorg Chem 35:5132–5136

    Article  CAS  Google Scholar 

  6. Yatsimirskii K (1990) Russ Chem Rev 59:1150–1156

    Article  Google Scholar 

  7. Yin X, Moss JR (1999) Coord Chem Rev 181:27–59

    Article  CAS  Google Scholar 

  8. Schneider J, Jia H, Kobiro K, Cabelli DE, Muckerman JT, Fujita E (2012) Energy Environ Sci 5:9502–9510

    Article  CAS  Google Scholar 

  9. Dubois MR, Dubois DL (2009) Acc Chem Res 42:1974–1982

    Article  Google Scholar 

  10. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Chem Soc Rev 38:89–99

    Article  CAS  Google Scholar 

  11. Ostapowicz TG, Holscher M, Leitner W (2012) Eur J Inorg Chem 34:5632–5641

    Article  Google Scholar 

  12. Vidal AB, Feria L, Evans J, Takahashi Y, Liu P, Nakamura K, Illas F, Rodriguez JA (2012) J Phys Chem Let 8:2275–2280

    Article  Google Scholar 

  13. DuBois DL (2007) In: Bard AJ (ed) Encyclopedia of electrochemistry. Wiley-VCH, Weinheim

    Google Scholar 

  14. Schneider J, Jia H, Muckerman JT, Fujita E (2012) Chem Soc Rev 41:2036–2051

    Article  CAS  Google Scholar 

  15. Xu Z, McNamara ND, Neumann GT, Schneider WF, Hicks JC (2013) Chem Cat Chem 5:1769–1771

    CAS  Google Scholar 

  16. Angamuthu R, Byers P, Lutz M, Spek AL, Bouwman E (2010) Science 327:313

    Article  CAS  Google Scholar 

  17. Rudolph M, Dautz S, Jäger EG (2000) J Am Chem Soc 122:10821

    Article  CAS  Google Scholar 

  18. Costentin C, Drouet S, Robert M, Saveant JM (2012) Science 338:90–94

    Article  CAS  Google Scholar 

  19. Sullivan BP, Krist K, Guard H (1993) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, Amsterdam

    Google Scholar 

  20. Froehlich JD, Kubiak CP (2012) Inorg Chem 51:3932–3934

    Article  CAS  Google Scholar 

  21. Fujita E, Haff J, Sanzenbacher R, Elias H (1994) Inorg Chem 33:4627–4628

    Article  CAS  Google Scholar 

  22. Meshituka S, Ichikawa M, Tamaru K (1974) Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide. J Chem Soc Chem Commun 5:158–159

    Article  Google Scholar 

  23. Chang M, Saji T, Bard AJ (1977) J Am Chem Soc 99:5399

    Article  CAS  Google Scholar 

  24. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  25. Lee EY, Hong D, Park HW, Suh MP (2003) Eur J Inorg Chem 17:3242–3249

    Article  Google Scholar 

  26. Beley M, Collin JP, Ruppert R, Sauvage JP (1984) J Chem Soc Chem Commun 19:1315–1316

    Article  Google Scholar 

  27. Gupta SK, Hitchcock PB, Kushwah YS (2002) J Coord Chem 55:1401–1407

    Article  CAS  Google Scholar 

  28. Choi MG, Kim MH, Kim HJ, Park J, Chang S (2007) Bull Korean Chem Soc 28:1818–1820

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, pp 157–470

    Google Scholar 

  30. Desilvestro J, Pons S (1989) J Electroanal Chem 267:207–220

    Article  CAS  Google Scholar 

  31. Balazs GB, Anson FC (1993) J Electroanal Chem 361:149–157

    Article  CAS  Google Scholar 

  32. de Alwis C, Crayston JA, Cromie T, Eisenblatter T, Hay RW, Lampeka YD, Tsymbal LV (2000) Electrochim Acta 45:2061–2074

    Article  Google Scholar 

  33. Grochala W (2006) Phys Chem Chem Phys 8:1340–1345

    Article  CAS  Google Scholar 

  34. Fisher B, Eisenberg R (1980) J Am Chem Soc 102:7361–7362

    Article  CAS  Google Scholar 

  35. Portenkirchner E, Oppelt K, Ulbricht C, Egbe DAM, Neugebauer H, Knör G, Sariciftci NS (2012) J Organ Chem. doi:10.1016/j.jorganchem.2012.05.021

    Google Scholar 

  36. Alhanash HBA (2012) Development of asymmetric ammonium-based room temperature ionic liquids https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:182019&datastreamId=FULL-TEXT.PDF. Accessed 10 Jul 2014

Download references

Acknowledgments

The authors gratefully acknowledge financial assistance from NSF of Sri Lanka through the research grant (RG/2006/FR/02), the Australian Research Council and an Endeavour Award-2011 Fellowship by DEEWR and AusAid of Australia to Dr. (Mrs.) M.Y.Udugala-Ganehenege. The authors extend their thanks to Prof. J. F. Endicott of Wayne State University, Detroit, MI 48202, USA, for reviewing the paper before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manawadevi Y. Udugala-Ganehenege.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udugala-Ganehenege, M.Y., Dissanayake, N.M., Liu, Y. et al. Electrochemistry of nickel(II) and copper(II) N,N′-ethylenebis(acetylacetoniminato) complexes and their electrocatalytic activity for reduction of carbon dioxide and carboxylic acid protons. Transition Met Chem 39, 819–830 (2014). https://doi.org/10.1007/s11243-014-9864-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9864-3

Keywords

Navigation