Skip to main content
Log in

LBM Simulation of Self-Assembly of Clogging Structures by Evaporation of Colloidal Suspension in 2D Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Evaporation of colloidal suspension in two-dimensional (2D) porous media leads to the formation of self-assembled clogging structures (SCS). The self-assembly pattern is studied with a hybrid two-phase lattice Boltzmann method incorporating non-isothermal phase change, particle transport and deposition models. During drying, particles accumulate along the liquid–vapor interface while colloidal suspension is evaporating. Upon reaching a certain local concentration threshold, the particles deposit and form a solid structure. The patterns formed by these structures are analyzed in different 2D porous media. In small porous systems of 4 pillars, the self-assembly of C-shaped and X-shaped structures is observed, which compares well with experimental bridge configurations. SCS in porous media of three different initial particle concentrations and of three different porosities are studied in larger porous systems. Simulated self-assembled clogging configurations show good qualitative matches with experimental configuration results. Particle concentration and porosity are both seen to affect the dynamic drying processes as well as the final self-assembled clogging configuration. The liquid configuration and the clogging structure affect each other mutually during drying. With initial concentration increasing from C0 = 0.00 to C0 = 0.16 at a given porosity \( \phi_{0} = 0.68 \), the average evaporation rate and porosity decrease by 21.9% and 1.9%, respectively, due to blockage of pores. With increasing initial porosity from \( \phi_{0} = 0.53 \) to \( \phi_{0} = 0.81 \) at a given concentration of C0 = 0.16, the average evaporation rate increases by a factor of 2.9 due to larger liquid–vapor interfacial area. Also with the given concentration of C0 = 0.16, the decrease in the porosity (0.94%, 1.9% and 2.7%) is higher for higher initial porosity (\( \phi_{0} = 0.53, \, 0.68,{\text{ and }}0.81 \)), since more particles (proportional to \( \phi_{0} \cdot C_{0} \)) are initially present. This work opens the door for numerically assisted design of colloid-deposition-based clogging patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allain, C., Limat, L.: Regular patterns of cracks formed by directional drying of a collodial suspension. Phys. Rev. Lett. 74(15), 2981–2984 (1995)

    Article  Google Scholar 

  • Bhardwaj, R., Fang, X., Somasundaran, P., Attinger, D.: Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram. Langmuir 26(11), 7833–7842 (2010)

    Article  Google Scholar 

  • Bizien, T., Even-Hernandez, P., Postic, M., Mazari, E., Chevance, S., Bondon, A., Hamon, C., Troadec, D., Largeau, L., Dupuis, C., Gosse, C., Artzner, F., Marchi, V.: Peptidic ligands to control the three-dimensional self-assembly of quantum rods in aqueous media. Small 10(18), 3707–3716 (2014)

    Article  Google Scholar 

  • Boles, M.A., Engel, M., Talapin, D.V.: Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116(18), 11220–11289 (2016)

    Article  Google Scholar 

  • Brunschwiler, T., Zürcher, J., Del Carro, L., Schlottig, G., Burg, B., Zimmermann, S., Zschenderlein, U., Wunderle, B., Schindler-Saefkow, F., Stässle, R.: Review on percolating and neck-based underfills for three-dimensional chip stacks. J. Electron. Packag. 138(4), 041009 (2016)

    Article  Google Scholar 

  • Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)

    Article  Google Scholar 

  • Dufresne, E.R., Corwin, E.I., Greenblatt, N.A., Ashmore, J., Wang, D.Y., Dinsmore, A.D., Cheng, J.X., Xie, X.S., Hutchinson, J.W., Weitz, D.A.: Flow and fracture in drying nanoparticle suspensions. Phys. Rev. Lett. 91(22), 1–4 (2003)

    Article  Google Scholar 

  • Fatt, I.: The network model of porous media. Pet. Trans. AIME 207, 144–181 (1956)

    Google Scholar 

  • Guglielmini, L., Gontcharov, A., Aldykiewicz, A.J., Stone, H.A.: Drying of salt solutions in porous materials: intermediate-time dynamics and efflorescence. Phys. Fluids 20(7), 077101 (2008)

    Article  Google Scholar 

  • Hamon, C., Postic, M., Mazari, E., Bizien, T., Dupuis, C., Even-Hernandez, P., Jimenez, A., Courbin, L., Gosse, C., Artzner, F., Marchi-Artzner, V.: Three-dimensional self-assembling of gold nanorods with controlled macroscopic shape and local smectic B order. ACS Nano 6(5), 4137–4146 (2012)

    Article  Google Scholar 

  • Huang, H., Lu, X.: Relative permeabilities and coupling effects in steady-state gas-liquid flow in porous media: a lattice Boltzmann study. Phys. Fluids 21(9), 092104 (2009)

    Article  Google Scholar 

  • Joshi, A.S., Sun, Y.: Wetting dynamics and particle deposition for an evaporating colloidal drop: a lattice Boltzmann study. Phys. Rev. E 82(4), 041401 (2010)

    Article  Google Scholar 

  • Kang, Q., Zhang, D., Chen, S.: Unified lattice Boltzmann method for flow in multiscale porous media. Phys. Rev. E 66(5), 1–11 (2002)

    Article  Google Scholar 

  • Kaya, D., Belyi, V.A., Muthukumar, M.: Pattern formation in drying droplets of polyelectrolyte and salt. J. Chem. Phys. 133(11), 114905 (2010)

    Article  Google Scholar 

  • Keita, E., Faure, P., Rodts, S., Coussot, P.: MRI evidence for a receding-front effect in drying porous media. Phys. Rev. E 87(6), 1–6 (2013)

    Article  Google Scholar 

  • Lauga, E., Brenner, M.P.: Evaporation-driven assembly of colloidal particles. Phys. Rev. Lett. 93(23), 1–4 (2004)

    Article  Google Scholar 

  • Ledesma-Aguilar, R., Vella, D., Yeomans, J.M.: Lattice-Boltzmann simulations of droplet evaporation. Soft Matter 10(41), 8267–8275 (2014)

    Article  Google Scholar 

  • Li, Q., Zhou, P., Yan, H.J.: Pinning–depinning mechanism of the contact line during evaporation on chemically patterned surfaces: a lattice Boltzmann study. Langmuir 32(37), 9389–9396 (2016)

    Article  Google Scholar 

  • Mazloomi, A., Chikatamarla, S.S., Karlin, I.V.: Entropic lattice Boltzmann method for multiphase flows. Phys. Rev. Lett. 114(17), 1–5 (2015)

    Article  Google Scholar 

  • Mazloomi Moqaddam, A., Derome, D., Carmeliet, J.: Dynamics of contact line pinning and depinning of droplets evaporating on micro-ribs. Langmuir 34, 5635–5645 (2018)

    Article  Google Scholar 

  • Metzger, T., Tsotsas, E.: Viscous stabilization of drying front: three-dimensional pore network simulations. Chem. Eng. Res. Des. 86(7), 739–744 (2008)

    Article  Google Scholar 

  • Panizza, P., Postic, M., Courbin, L., Raffy, G., Artzner, F.: Formation and growth of labyrinthine drying patterns in 2-D porous media. In: EFMC11 11th European Fluid Mechanics Conference 2016 Sep 12 (2016)

  • Park, J., Moon, J.: Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 22(8), 3506–3513 (2006)

    Article  Google Scholar 

  • Prat, M.: Pore network models of drying, contact angle, and film flows. Chem. Eng. Technol. 34(7), 1029–1038 (2011)

    Article  Google Scholar 

  • Qin, F., Mazloomi Moqaddam, A., Kang, Q., Derome, D., Carmeliet, J.: Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow. Phys. Fluids 30, 032104 (2018)

    Article  Google Scholar 

  • Rad, M.N., Shokri, N.: Nonlinear effects of salt concentrations on evaporation from porous media. Geophys. Res. Lett. 39(4), 1–5 (2012)

    Google Scholar 

  • Sanmartin, F.A., Laurindo, J.B., Segura, L.A.: Pore-scale simulation of drying of a porous media saturated with a sucrose solution. Dry. Technol. 29(8), 873–887 (2011)

    Article  Google Scholar 

  • Scherer, G.W.: Stress from crystallization of salt. Cem. Concr. Res. 34(9), 1613–1624 (2004)

    Article  Google Scholar 

  • Seo, C., Jang, D., Chae, J., Shin, S.: Altering the coffee-ring effect by adding a surfactant-like viscous polymer solution. Sci. Rep. 7(1), 1–9 (2017)

    Article  Google Scholar 

  • Stadler, R., Carro, L.D., Zurcher, J., Schlottig, G., Studart, A.R., Brunschwiler, T.: Direct investigation of microparticle self-assembly to improve the robustness of neck formation in thermal underfills. In: IEEE ITHERM Conference, pp. 167–173 (2017)

  • Surasani, V.K., Metzger, T., Tsotsas, E.: A non-isothermal pore network drying model with gravity effect. Transp. Porous Media 80(3), 431–439 (2009)

    Article  Google Scholar 

  • Vorhauer, N., Wang, Y.J., Kharaghani, A., Tsotsas, E., Prat, M.: Drying with formation of capillary rings in a model porous medium. Transp. Porous Media 110(2), 197–223 (2015)

    Article  Google Scholar 

  • Yiotis, A.G., Stubos, A.K., Boudouvis, A.G., Yortsos, Y.C.: A 2-D pore-network model of the drying of single-component liquids in porous media. Adv. Water Resour. 24(3–4), 439–460 (2001)

    Article  Google Scholar 

  • Yiotis, A.G., Stubos, A.K., Boudouvis, A.G., Tsimpanogiannis, N., Yortsos, Y.C.: Pore-network modeling of isothermal drying in porous media. In: Upscaling Multiph. Flow Porous Media From Pore to Core Beyond, pp. 63–86 (2005)

  • Yunker, P.J., Still, T., Lohr, M.A., Yodh, A.G.: Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360), 308–311 (2011)

    Article  Google Scholar 

  • Zhao, M., Yong, X.: Modeling evaporation and particle assembly in colloidal droplets. Langmuir 33(23), 5734–5744 (2017)

    Article  Google Scholar 

  • Zurcher, J., Chen, X., Burg, B.R., Zimmermann, S., Straessle, R., Studart, A.R., Brunschwiler, T.: Enhanced percolating thermal underfills achieved by means of nanoparticle bridging necks. IEEE Trans. Compon. Packag. Manuf. Technol. 6(12), 1785–1795 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Swiss National Science Foundation (SNF, Project No. 160189) is acknowledged for the financial support. LANL Institutional Computing Program is acknowledged for providing the computing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Qin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, F., Mazloomi Moqaddam, A., Kang, Q. et al. LBM Simulation of Self-Assembly of Clogging Structures by Evaporation of Colloidal Suspension in 2D Porous Media. Transp Porous Med 128, 929–943 (2019). https://doi.org/10.1007/s11242-018-1157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1157-4

Keywords

Navigation