Skip to main content
Log in

Multi-Physics Pore-Network Modeling of Two-Phase Shale Matrix Flows

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We construct a three-dimensional pore-network model with mixed wettability to study the two-phase flow mechanisms in dry gas producing shales. Previous pore-scale modeling studies on shale have been focused on single-phase gas flow through the nano-pores. However, at most field sites, the majority of the injected fracking fluid does not return to the surface during the flow-back period. It is believed that a large portion of the fracking fluid imbibes into the shale matrix during the fracking process, and thus two-phase flow occurs. In addition, while the inorganic shale matrix is generally water-wet, the organic material embedded within the matrix is hydrophobic. As such, the system displays spatial heterogeneity of wettability. Other important physics are also coupled in the model. Pressure-dependent gas sorption effects are included in the organic pores, with pore size reduction accounted for in those pores. Compressibility and slip flow effects of the gas phase are included throughout the pore-network, with the latter underscoring the fact that the sizes of the nano-pores are comparable to the mean free path of the methane molecule. The coupled effects of these various physical processes are studied to determine the importance of each effect. Continuum-scale properties are computed, including relative permeability curves, as a function of fraction and structure of organic regions and type and magnitude of boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aghaei, A., Piri, M.: Direct pore-to-core up-scaling of displacement processes: dynamic pore network modeling and experimentation. J. Hydrol. 522, 488–509 (2015)

    Article  Google Scholar 

  • Ambrose, R., Hartman, R., Diaz-Campos, M., Akkutlu, I.Y., Sondergeld, C.: New pore-scale considerations for shale gas in place calculations. SPE-131772. In: Proceedings of SPE Unconventional Gas Conference (2010)

  • Andrew, M., Bijeljic, B., Blunt, M.J.: Pore-scale imaging of geological carbon dioxide storage under in situ conditions. Geophys. Res. Lett. 40(15), 3915–3918 (2013)

    Article  Google Scholar 

  • Andrew, M., Bijeljic, B., Blunt, M.J.: Pore-by-pore capillary pressure measurements using X-ray microtomography at reservoir conditions: Curvature, snap-off, and remobilization of residual \(\text{ CO }_{2}\). Water Resour. Res. 50(11), 8760–8774 (2014a)

    Article  Google Scholar 

  • Andrew, M., Bijeljic, B., Blunt, M.J.: Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates. Int. J. Greenh. Gas Control 22, 1–14 (2014b)

    Article  Google Scholar 

  • Andrew, M., Bijeljic, B., Blunt, M.J.: Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography. Adv. Water Resour. 68, 24–31 (2014c)

    Article  Google Scholar 

  • Armstrong, R.T., Georgiadis, A., Ott, H., Klemin, D., Berg, S.: Critical capillary number: desaturation studied with fast X-ray computed microtomography. Geophys. Res. Lett. 41(1), 55–60 (2014)

    Article  Google Scholar 

  • Beal, C.: The viscosity of air water natural gas crude oil and its associated gases at oil field temperatures and pressures. Trans. AIME 165(1), 94–115 (1946)

    Article  Google Scholar 

  • Bennion, D.B., Bachu, S.: Permeability and relative permeability measurements at reservoir conditions for \(\text{ CO }_{2}\)-water systems in ultra low permeability confining caprocks. SPE-106995. In: Proceedings on SPE Europec/EAGE Annual Conference and Exhibition (2007)

  • Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J., Kersten, M., Irvine, S., Stampanoni, M.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. 110(10), 3755–3759 (2013)

    Article  Google Scholar 

  • Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford (1994)

    Google Scholar 

  • Blunt, M.J.: Flow in porous media–pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6(3), 197–207 (2001)

    Article  Google Scholar 

  • Blunt, M.J., Jackson, M.D., Piri, M., Valvatne, P.H.: Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour. 25(8), 1069–1089 (2002)

    Article  Google Scholar 

  • Bohacs, K., Passey, Q., Rudnicki, M., Esch, W., Lazar, O.: The spectrum of fine-grained reservoirs from ‘shale gas’ to ‘shale oil’/tight liquids: essential attributes, key controls, practical characterization. IPTC-16676. In: Proceedings on 6th International Petroleum Technology Conference (2013)

  • Celia, M.A., Reeves, P.C., Ferrand, L.A.: Recent advances in pore scale models for multiphase flow in porous media. Rev. Geophys. 33, 1049–1057 (1995)

    Article  Google Scholar 

  • Chalmers, G.R., Bustin, R.M., Power, I.M.: Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 96(6), 1099–1119 (2012)

    Article  Google Scholar 

  • Clarkson, C.R., Solano, N., Bustin, R.M., Bustin, A.M.M., Chalmers, G.R.L., He, L., Melnichenko, Y.B., Radliński, A.P., Blach, T.P.: Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 103, 606–616 (2013)

    Article  Google Scholar 

  • Darabi, H., Ettehad, A., Javadpour, F., Sepehrnoori, K.: Gas flow in ultra-tight shale strata. J. Fluid Mech. 710, 641–658 (2012)

    Article  Google Scholar 

  • Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 80(3), 036307 (2009)

    Article  Google Scholar 

  • Fatt, I.: The network model of porous media. I. Capillary pressure characteristics. Trans. AIME 207, 144–159 (1956a)

    Google Scholar 

  • Fatt, I.: The network model of porous media. II. Dynamic properties of a single size tube network. Trans. AIME 207, 160–163 (1956b)

    Google Scholar 

  • Fatt, I.: The network model of porous media. III. Dynamic properties of networks with tube radius distribution. Trans. AIME 207, 164–181 (1956c)

    Google Scholar 

  • Freeman, C.A., Moridis, G.J., Blasingame, T.A.: A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems. Transp. Porous Media 90, 253–268 (2011)

    Article  Google Scholar 

  • Gharbi, O., Blunt, M.J.: The impact of wettability and connectivity on relative permeability in carbonates: a pore network modeling analysis. Water Resour. Res. 48(12), W12513 (2012)

    Google Scholar 

  • Herring, A.L., Andersson, L., Newell, D.L., Carey, J.W., Wildenschild, D.: Pore-scale observations of supercritical \(\text{ CO }_{2}\) drainage in Bentheimer sandstone by synchrotron X-ray imaging. Int. J. Greenh. Gas Control 25, 93–101 (2014)

    Article  Google Scholar 

  • Hough, E.W., Rzasa, M.J., Wood, B.B.: Interfacial tensions at reservoir pressures and temperatures; apparatus and the water-methane system. J. Petrol. Technol. 3(2), 57–60 (1951)

    Article  Google Scholar 

  • International Energy Agency (IEA).: Golden Rules for a Golden Age of Gas, World Energy Outlook Special Report on Unconventional Gas. http://www.iea.org/publications/freepublications/publication/WEO2012_GoldenRulesReport.pdf (2012)

  • Javadpour, F., Fisher, D., Unsworth, M.: Nano-scale gas flow in shale sediments. J. Can. Pet. Technol. 46(10), 55–61 (2007)

    Article  Google Scholar 

  • Javadpour, F.: Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J. Can. Pet. Technol. 48, 16–21 (2009)

    Article  Google Scholar 

  • Joekar-Niasar, V.: The immiscibles: Capillarity effects in porous media-pore-network modelling. Geol. Ultraiectina. 318, 148–162 (2010)

    Google Scholar 

  • Joekar-Niasar, V., Hassanizadeh, S.M.: Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: a review. Crit. Rev. Environ. Sci. Technol. 42(18), 1895–1976 (2012)

    Article  Google Scholar 

  • Klinkenberg, L.J.: The permeability of porous media to liquid and gases. In: API Drilling and Production Practice, pp. 200–213 (1941)

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  Google Scholar 

  • Loucks, R.G., Reed, R.M., Ruppel, S.C., Jarvie, D.M.: Morphology, genesis, and distribution of nanometer- scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 79, 848–861 (2009)

    Article  Google Scholar 

  • Loucks, R., Reed, R., Ruppel, S.C., Hammes, U.: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 6, 1071–1098 (2012)

    Article  Google Scholar 

  • Ma, J., Sanchez, J.P., Wu, K., Couples, G.D., Jiang, Z.: A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials. Fuel 116, 498–508 (2014)

    Article  Google Scholar 

  • Mastalerz, M., Schimmelmann, A., Drobniak, A., Chen, Y.: Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 97(10), 1621–1643 (2013)

    Article  Google Scholar 

  • Mehmani, A., Prodanović, M., Javadpour, F.: Multiscale, multiphysics network modeling of shale matrix gas flows. Transp. Porous Media 99(2), 377–390 (2013)

    Article  Google Scholar 

  • Mehmani, A., Prodanović, M.: The effect of microporosity on transport properties in porous media. Adv. Water Resour. 63, 104–119 (2014)

    Article  Google Scholar 

  • Prud’Homme, R.K., Chapman, T.W., Bowen, J.R.: Laminar compressible flow in a tube. Appl. Sci. Res. 43(1), 67–74 (1986)

    Article  Google Scholar 

  • Rexer, T.F., Mathia, E.J., Aplin, A.C., Thomas, K.M.: High-pressure methane adsorption and characterization of pores in Posidonia shales and isolated kerogens. Energ. Fuel. 28(5), 2886–2901 (2014)

    Article  Google Scholar 

  • Sakhaee-Pour, A., Bryant, S.: Gas permeability of shale. SPE Reserv. Eval. Eng. 15(4), 401–409 (2012)

    Article  Google Scholar 

  • Schettler, P.D., Parmely, C.R.: Contributions to total storage capacity in Devonian shales. SPE-23422. In: Proceedings on SPE Eastern Regional Meeting (1991)

  • Soeder, D.J.: Porosity and permeability of eastern Devonian gas shale. SPE Form. Eval. 3(1), 116–124 (1988)

    Article  Google Scholar 

  • Valvatne, P.H., Blunt, M.J.: Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 40(7), W07406 (2004)

    Google Scholar 

  • Vidic, R.D., Brantley, S.L., Vandenbossche, J.M., Yoxtheimer, D., Abad, J.D.: Impact of shale gas development on regional water quality. Science 340(6134), 1235009 (2013)

    Article  Google Scholar 

  • Wu, Y.S., Pruess, K., Persoff, P.: Gas flow in porous media with Klinkenberg effects. Transp. Porous Media 32(1), 117–137 (1998)

    Article  Google Scholar 

  • Zhou, D., Blunt, M., Orr Jr, F.M.: Hydrocarbon drainage along corners of noncircular capillaries. J. Colloid Interf. Sci. 187(1), 11–21 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the Carbon Mitigation Initiative at Princeton University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwo Huang.

Ethics declarations

Conflicts of interest

The three authors Xinwo Huang, Karl W. Bandilla and Michael A. Celia state that the submitted paper is original work, that it is not being submitted elsewhere, and that the three authors agree with the contents and to the submission. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Bandilla, K.W. & Celia, M.A. Multi-Physics Pore-Network Modeling of Two-Phase Shale Matrix Flows. Transp Porous Med 111, 123–141 (2016). https://doi.org/10.1007/s11242-015-0584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0584-8

Keywords

Navigation