Skip to main content
Log in

Implications of rainfall temporal resolution for soil-moisture and transpiration modeling

  • Original Paper
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Dimensionless groups of parameters characterizing an ecosystem are valuable indicators for the a priori assessment of the effect of rainfall data resolution on predictions of soil moisture and transpiration. Knowledge of these dimensionless groups enables identification of appropriate levels of rainfall data resolution, when using historical rainfall directly or when using it to derive rainfall model parameters for use in models of soil–plant–climate systems. Detailed simulation studies of the soil, plant, and climate systems in Colorado and Texas, highly resolved in time and vertical space, show that historical rainfall data resolved at the daily level allow accurate prediction of soil-moisture and transpiration dynamics for smaller time resolutions. These results support inferences based on the dimensionless groups. Furthermore, no significant improvement in the prediction of soil-moisture and transpiration dynamics is attained, when representing rainfall through a more complex Neyman–Scott model rather than the simple rectangular pulses Poisson model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A e & B e :

Parameters of evaporation weighting function [–]

A r & B r :

Parameters of root weighting function [–]

b :

Soil retention parameter [–]

C r :

Root resistance coefficient [days/cm]

C s :

Soil resistance coefficient [–]

D I :

Index of dryness [–]

E max1 day :

Maximum daily evaporation rate [cm/day]

ET max1 day :

Maximum daily evapotranspiration rate [cm/day]

I I,t :

Temporal infiltration index [–]

K sat :

Saturated hydraulic conductivity [cm/day]

L :

Duration of a rainfall pulse [days]

R I :

Runoff index [–]

S h :

Hygroscopic saturation [–]

S w :

Saturation at wilting [–]

S*:

Saturation at incipient stomatal closure [–]

X :

Intensity of a rainfall pulse [days]

Y :

Precipitation intensity [cm/day]

Z e :

Evaporation depth [cm]

Δ:

Depth of interception [cm]

ϕ:

Porosity [–]

γ:

Plant compensation factor [–]

η:

Parameter of exponential distribution for rainfall-pulse duration [day−1]

λ:

Arrival rate of rainfall pulse or storm event [day−1]

μ c :

Mean number of cells per storm [cell/storm]

μ L :

Mean duration of a rainfall pulse [days]

μ X :

Mean intensity of a rainfall pulse [cm/day]

ξ:

Parameter of exponential distribution for rainfall-pulse intensity [days/cm]

Ψ e :

Entry pressure head [cm]

Ψ w :

Plant fluid potential at wilting [cm]

Ψ *:

Plant fluid potential at incipient stomatal closure [cm]

References

  • Burke I.C., Lauenroth W.K., Riggle R., Brannen P., Madigan B., Beard S. (1999) Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography grazing microsite and plant species in controlling spatial patterns. Ecosystems 2:422–438

    Article  Google Scholar 

  • Calenda G., Napolitano F. (1999) Parameter estimation of Neyman–Scott processes for temporal point rainfall simulation. J. Hydrol. 225:45–66

    Article  Google Scholar 

  • Campbell, G.S.: Simulation of water uptake by plant roots. In Modeling Plant and Soil Systems—Agronomy Monograph, No. 31, Madison, 273–285 (1991)

  • Celia, M.A., Bouloutas, E.T., Zarba, R.L.: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26(7), 1483–1496 (1990)

    Google Scholar 

  • Cowpertwait P.S. (1991) Further developments of the Neyman–Scott clustered point process for modeling rainfall. Water Resour. Res. 27(7):1431–1438

    Article  Google Scholar 

  • Cuomo C.J., Ansley R.J., Jacoby P.W., Sosebee R.E. (1992) Honey mesquite transpiration along a vertical site gradient. J. Range Manage. 45(4):334–338

    Google Scholar 

  • Entekhabi, D., Rodriguez-Iturbe, I., Eagleson, P.S.: Probabilistic representation of the temporal rainfall process by a modified Neyman–Scott rectangular pulses model: parameter estimation and validation. Water Resour. Res. 25(2), 295–302 (1989)

    Google Scholar 

  • Favre, A.-C., Musy, A., Morgenthaler, S.: Unbiased parameter estimation of the Neyman–Scott model for rainfall simulation with related confidence interval. J. Hydrol. 286, 168–178 (2004)

    Google Scholar 

  • Feddes, R.A., Hoff, H., Bruen, M., Dawson, T., de Rosnay, P., Dirmeyer, P., Jackson, R.B., Kabat, P., Kleidon, A., Lilly, A., Pittman, A.J.: Modeling root water uptake in hydrological and climate models. Bull. Am. Meteor. Soc. 82(12), 2797–2809 (2001)

    Google Scholar 

  • Foufoula-Georgiou, E., Guttorp, P.: Compatibility of continuous rainfall occurrence models with discrete rainfall observations. Water Resour. Res. 22(8), 1316–1322(1986)

    Google Scholar 

  • Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I.: Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resour. Res. 38(9), 1166, doi:10.1029/2001Wrooo826 (2002)

  • Guswa, A.J., Celia, M.A., Rodriguez-Iturbe I.: Effect of vertical resolution on predictions of transpiration in water-limited ecosystems. Adv. Water Res. 27, 467–480 (2004)

    Google Scholar 

  • Haas R.H., Dodd J.D. (1972) Water stress patterns in honey mesquite. Ecology 5:674–680

    Article  Google Scholar 

  • Heitschmidt R.K., Ansley R.J., Dowhower S.L., Jacoby P.W., Price D.L. (1988) Some observations from the excavation of honey mesquite root systems. J. Range Manage. 41(3):227–231

    Google Scholar 

  • Hopmans, J.W., Bristow, K.L.: Current capabilities and future needs of root water and nutrient uptake modeling. In: Sparks, D.L. (ed.) Advances in Agronomy, vol. 77, pp. 103–181, San Diego (2002)

  • Laio, F., Porporato, A., Fernandez-Illescas, C., Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress IV: Discussion of real cases. Adv. Water Res. 24(7), 745–762 (2001a)

  • Laio, F., Porporato, A., Ridolfi, L., Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrological processes and response to water stress II: Probabilistic soil moisture dynamics. Adv. Water Res. 24(7), 707–723 (2001b)

  • Lauenroth W.K., Sims P.L. (1976) Evapotranspiration from a shortgrass prairie subjected to water and nitrogen treatments. Water Resour. Res. 12(3):437–442

    Google Scholar 

  • Lauenroth, W.K., Dodd, J.L.: The effect of water- and nitrogen- induced stresses on plant community structure in a semiarid grassland. Oecologia. 36, 211–222 (1978)

    Google Scholar 

  • Lauenroth W.K., Sala O.E., Coffin D.P., Kirchner T.B. (1987) Root dynamics of Bouteloua gracilisduring short-term recovery from drought. Funct. Ecol. 1:117–124

    Article  Google Scholar 

  • Lee, C.A., Lauenroth, W.K.: Spatial distributions of grass and shrub root systems in the shortgrass steppe. Am. Midl. Nat. 132, 117–123 (1994)

    Google Scholar 

  • Leetham, J.W., Michulmas, D.G.: The composition and distribution of soil microarthropods in the shortgrass steppe in relation to soil water, root biomass, and grazing by cattle. Pedobiologia 28, 311–325 (1985)

    Google Scholar 

  • Liang Y.M., Hazlett D.L., Lauenroth W.K. (1989) Biomass dynamics and water use efficiencies of five plant communities in the shortgrass steppe. Oecologia 80:148–153

    Google Scholar 

  • Lhomme, J.-P.: Formulation of root water uptake in a multilayer soil–plant model: does van den Honert’s equation hold? Hydrol. Earth Syst. Sci. 2(1), 31–40 (1998)

    Google Scholar 

  • Loomis, L.E.: Influence of heterogeneous subsoil development on vegetation patterns in a subtropical savanna parkland, Texas, PhD Dissertation, Texas A&M University, College Station, Texas (1989)

  • Midwood, A.J., Boutton, T.W., Archer, S.R., Watts, S.E.: Water use by woody plants on contrasting soils in a savanna parkland: assessment with δ2H and δ18O. Plant Soil. 205, 13–24 (1989)

    Google Scholar 

  • Milly P.C.D. (1989) A minimalist probabilistic description of root zone soil water. Water Resour. Res.37(3):457–464

    Article  Google Scholar 

  • Morrison, J.E., Smith, J.A.: Scaling properties of flood peaks. Extremes 4(1), 5–22 (2001)

    Google Scholar 

  • Onof C., Chandler R.E., Kakou A., Northrop P., Wheater H.S., Isham V. (2001) Rainfall modelling using Poisson-cluster processes: a review of developments. Stochastic Environ. Res. Risk Assess. 14:384–411

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (2001)

  • Rawls, W.J., Ahuja, L.R., Brakensiek, D.L., Shirmohammadi, A.: Infiltration and soil water movement. In: Maidment, D.R. (ed.) Handbook of Hydrology. pp. 5.17–5.39. McGraw-Hill, New York (1993)

  • Rodriguez-Iturbe, I., Cox, D.R., Isham, V.: Some models for rainfall based on stochastic point processes. Proc. R. Soc. Lond. Ser. A. 410, 269–288 (1987a)

  • Rodriguez-Iturbe I., Febres de Power B., Valdés J.B. (1987) Rectangular pulses point process models for rainfall: analysis of empirical data. J. Geophys. Res. 92(D8):9645–9656

    Google Scholar 

  • Rodriguez-Iturbe, I., Gupta, V.K., Waymire, E.: Scale considerations in the modeling of temporal rainfall. Water Resour. Res. 20(11), 1611–1619 (1984)

    Google Scholar 

  • Rodriguez-Iturbe I., Porporato A., Laio F., Ridolfi L. (2001) Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: I. Scope and general outline. Adv. Water Res. 24(7):745–762

    Google Scholar 

  • Sala, O.E., Lauenroth, W.K., Parton, W.J., Trlica, M.J.: Water status of soil and vegetation in a shortgrass steppe. Oecologia 48, 327–331 (1981)

    Google Scholar 

  • Sala, O.E., Lauenroth, W.K., Parton, W.J.: Plant recovery following prolonged drought in a shortgrass steppe. Agric. Meteorol. 27, 49–58 (1982a)

  • Sala O.E., Lauenroth W.K., Reid C.P.P. (1982) Water relations: a new dimension for niche separation between Bouteloua gracilis and Agropyron smithii in North American semi-arid grasslands. J. Appl. Ecol. 19:647–657

    Article  Google Scholar 

  • Scifres, C.J., Koerth, B.H.: Climate, soils and vegetation of the La Copita Research Area, Texas A&M Technical Publication MP-1626, Texas A&M University, College Station, Texas (1987)

  • Smith, R.E.: Infiltration Theory for Hydrologic Applications. The American Geophysical Union, Washington, DC (2002)

  • Stroh, J.C., Archer, S.R., Wilding, L.P., Doolittle, J.P.: Detection of edaphic discontinuities in ground-penetrating radar and electromagnetic induction. In: Stuth, J.W., Dudash, S.M. (eds.) La Copita research area: consolidated progress report. Report of Texas Agricultural Experimental Station, Texas A&M University, College Station, TX, (1996)

  • Velghe T., Troch P.A., De Troch F.P., Van de Velde J. (1994) Evaluation of cluster-based rectangular pulses point process models for rainfall. Water Resour. Res. 30(10):2847–2857

    Article  Google Scholar 

  • Verburg, K., Ross, P.J., Bristow, K.L.: SWIMv2.1 User Manual, Divisional Report 130. CSIRO Division of Soils (1996)

  • Wan C. Sosebee R.E. (1991) Water relations and transpiration of honey mesquite on 2 sites in West Texas. J. Range Manage. 44(2):156–160

    Google Scholar 

  • Yonker C.M., Schimel D.S., Paroussis E., Heil D. (1988) Patterns of organic carbon accumulation in a semiarid shortgrass steppe, Colorado. Soil Sci. Soc. Am. J. 52:478–483

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Puma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puma, M.J., Rodriguez-Iturbe, I., Celia, M.A. et al. Implications of rainfall temporal resolution for soil-moisture and transpiration modeling. Transp Porous Med 68, 37–67 (2007). https://doi.org/10.1007/s11242-006-9057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-9057-4

Keywords

Navigation