Skip to main content
Log in

Aspects of defects in integrable quantum field theory

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Defects are ubiquitous in nature, for example, in the form of dislocations, shocks, bores, or impurities of various kinds, and their descriptions are an important part of any physical theory. But the following question can be asked. What types of defect are allowed, and what are their properties if maintaining integrability within an integrable field theory in two-dimensional space-time is required? We consider a collection of ideas and questions connected with this problem, including examples of integrable defects and the curiously special roles played by energy-momentum conservation and Bäcklund transformations, solitons scattering on defects, and some interesting effects in the framework of the sine-Gordon model, defects in integrable quantum field theory, and the construction of transmission matrices. In conclusion, we remark on algebraic considerations and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Goodman, P. J. Holmes, and M. I. Weinstein, Phys. D, 161, 21–44 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Bowcock, E. Corrigan, and C. Zambon, Internat. J. Mod. Phys. A, 19(Suppl. 2), 82–91 (2004); arXiv:hepth/0305022v2 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. P. Bowcock, E. Corrigan, and C. Zambon, JHEP, 0508, 023 (2005); arXiv:hep-th/0506169v2 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  4. E. Corrigan and C. Zambon, J. Phys. A, 37, L471–L477 (2004); arXiv:hep-th/0407199v1 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. P. Bowcock, E. Corrigan, and C. Zambon, JHEP, 0401, 056 (2004); arXiv:hep-th/0401020v1 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  6. E. Corrigan and C. Zambon, JHEP, 0707, 001 (2007); arXiv:0705.1066v1 [hep-th] (2007).

    Article  MathSciNet  ADS  Google Scholar 

  7. E. Corrigan and C. Zambon, J. Phys. A, 42, 475203 (2009); arXiv:0908.3126v1 [hep-th] (2009).

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Delfino, G. Mussardo, and P. Simonetti, Phys. Lett. B, 328, 123–129 (1994); arXiv:hep-th/9403049v2 (1994); Nucl. Phys. B, 432, 518–550 (1994); arXiv:hep-th/9409076v1 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  9. R. Konik and A. LeClair, Nucl. Phys. B, 538, 587–611 (1999); arXiv:hep-th/9703085v2 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A. B. Zamolodchikov and Al. B. Zamolodchikov, Ann. Phys., 120, 253–291 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  11. E. Corrigan and C. Zambon, J. Phys. A, 43, 345201 (2010); arXiv:1006.0939v1 [hep-th] (2010).

    Article  MathSciNet  Google Scholar 

  12. A. G. Izergin and V. E. Korepin, Commun. Math. Phys., 79, 303–316 (1981); F. A. Smirnov, Internat. J. Mod. Phys. A, 6, 1407–1428 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  13. E. Corrigan and C. Zambon, Nucl. Phys. B, 848, 545–577 (2011); arXiv:1012.4186v1 [hep-th] (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. R. Weston, “An algebraic setting for defects in the XXZ and sine-Gordon models,” arXiv:1006.1555v2 [math-ph] (2010).

  15. M. Jimbo, “Introduction to the Yang-Baxter equation,” in: Braid Group, Knot Theory, and Statistical Mechanics (Adv. Ser. Math. Phys., Vol. 17, C. N. Yang and M.-L. Ge, eds.), Vol. 2, World Scientific, River Edge, N. J. (1994), pp. 153–176.

    Google Scholar 

  16. A. J. Macfarlane, J. Phys. A, 22, 4581–4588 (1989); L. C. Biedenharn, J. Phys. A, 22, L873–L878 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. C. J. Efthimiou, Nucl. Phys. B, 398, 697–740 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  18. H. Boos, F. Göhmann, A. Klümper, K. S. Nirov, and A. V. Razumov, J. Phys. A, 43, 415208 (2010); arXiv:1004.5342v3 [math-ph] (2010).

    Article  MathSciNet  Google Scholar 

  19. I. Habibullin and A. Kundu, Nucl. Phys. B, 795, 549–568 (2008); arXiv:0709.4611v2 [hep-th] (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Z. Bajnok and Z. Simon, Nucl. Phys. B, 802, 307–329 (2008); arXiv:0712.4292v1 [hep-th] (2007); F. Nemes, Internat. J. Mod. Phys. A, 25, 4493–4509 (2010); arXiv:0909.3268v1 [hep-th] (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. J. F. Gomes, L. H. Ymai, and A. H. Zimerman, J. Phys. A, 39, 7471–7483 (2006); arXiv:hep-th/0601014v2 (2006); A. R. Aguirre, J. F. Gomes, L. H. Ymai, and A. H. Zimerman, JHEP, 1102, 017 (2011); arXiv: 1012.1537v1 [nlin.SI] (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. E. Corrigan and C. Zambon, Nonlinearity, 19, 1447–1469 (2006); arXiv:nlin/0512038v2 (2005); V. Caudrelier, Internat. J. Geom. Meth. Mod. Phys., 5, 1085–1108 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. V. V. Bazhanov, A. N. Hibberd, and S. M. Khoroshkin, Nucl. Phys. B, 622, 475–547 (2002); arXiv:hep-th/0105177v3 (2001); T. Kojima, J. Phys. A, 41, 355206 (2008); arXiv:0803.3505v2 [nlin.SI] (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Corrigan.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 171, No. 2, pp. 271–282, May, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrigan, E. Aspects of defects in integrable quantum field theory. Theor Math Phys 171, 655–665 (2012). https://doi.org/10.1007/s11232-012-0062-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0062-1

Keywords

Navigation