Skip to main content
Log in

Relaxation Results for Hybrid Inclusions

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

The Filippov–Ważewski relaxation theorem describes when the set of solutions to a differential inclusion is dense in the set of solutions to the relaxed (convexified) differential inclusion. This paper establishes relaxation results for a broad range of hybrid systems which combine differential inclusions, difference inclusions, and constraints on the continuous and discrete motions induced by these inclusions. The relaxation results are used to deduce continuous dependence on initial conditions of the sets of solutions to hybrid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmet, M.U.: On the smoothness of solutions of impulsive autonomous systems. Nonlinear Anal. 60(2), 311–324 (2005)

    MATH  MathSciNet  Google Scholar 

  2. Aubin, J.-P.: Viability Theory. Birkhauser (1991)

  3. Aubin, J.-P., Cellina, A.: Differential Inclusions. Springer-Verlag (1984)

  4. Aubin, J.-P., Haddad, G.: Cadenced runs of impulse and hybrid control systems. Internat. J. Robust Nonlinear Control 11(5), 401–415 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aubin, J.-P., Haddad, G.: Impulse capture basins of sets under impulse control systems. J. Math. Anal. Appl. 275, 676–692 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aubin, J.-P., Lygeros, J., Quincampoix, M., Sastry, S., Seube, N.: Impulse differential inclusions: a viability approach to hybrid systems. IEEE Trans. Automat. Control 47(1), 2–20 (2002)

    Article  MathSciNet  Google Scholar 

  7. Broucke, M., Arapostathis, A.: Continuous selections of trajectories of hybrid systems. Systems Control Lett. 47, 149–157 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cai, C., Goebel, R., Teel, A.R.: Results on relaxation theorems for hybrid systems. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 276–281 (2006)

  9. Cai, C., Teel, A.R.: Results on input-to-state stability for hybrid systems. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 5403–5408 (2005)

  10. Cai, C., Teel, A.R., Goebel, R.: Smooth Lyapunov functions for hybrid systems. Part I: existence is equivalent to robustness. IEEE Trans. Automat. Control 52(7), 1264–1277 (2007)

    Article  MathSciNet  Google Scholar 

  11. Clarke, F.H., Ledyaev, Y.S., Rifford, L., Stern, R.J.: Feedback stabilization and Lyapunov functions. SIAM J. Control Optim. 39(1), 25–48 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Collins, P.: A trajectory-space approach to hybrid systems. In: 16th International Symposium on Mathematical Theory of Networks and Systems (2004)

  13. Filippov, A. Classical solutions of differential equations with multivalued right-hand side. SIAM J. Control, 5(4), 609–621 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  14. Frankowska, H., Rampazzo, F.: Filippov’s and Filippov–Ważewski’s theorems on closed domains. J. Differential Equations 161, 449–478 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goebel, R., Hespanha, J., Teel, A.R., Cai, C., Sanfelice, R.: Hybrid systems: generalized solutions and robust stability. In: IFAC Symposium on Nonliear Control Systems, Stuttgart, pp. 1–12 (2004)

  16. Goebel, R., Teel, A.R.: Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica 42, 573–587 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hájek, O.: Discontinuous differential equations, I. J. Differential Equations 32, 149–170 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hermes, H.: Discontinuous vector fields and feedback control. In Differential Equations and Dynamical Systems, pp. 155–165. Academic Press (1967)

  19. Hespanha, J.P.: Uniform stability of switched linear systems: extensions of LaSalle’s invariance principle. IEEE Trans. Automat. Control. 49, 470–482 (2004)

    Article  MathSciNet  Google Scholar 

  20. Hespanha, J.P., Liberzon, D., Teel, A.R.: On input-to-state stability of impulsive systems. In: Proc. 44th IEEE Conference on Decision and Control 2005 European Control Conference, pp. 3992–3997 (2005)

  21. Hespanha, J.P., Morse, A.S.: Stabilization of nonholonomic integrators via logic-based swithcing. Automatica 35(3), 385–393 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ingalls, B., Sontag, E.D., Wang, Y.: An infinite-time relaxation theorem for differential inclusions. Proc. Amer. Math. Soc. 131(2), 487–499 (2002)

    Article  MathSciNet  Google Scholar 

  23. Kellett, C.M., Teel, A.R.: Smooth Lyapunov functions and robustness of stability for difference inclusions. Systems Control Lett. 52, 395–405 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Krasovskii, N.N.: Game-Theoretic Problems of Capture. Nauka, Moscow, (1970) (in Russian)

    Google Scholar 

  25. Lygeros, J., Johansson, K.H., Simić, S.N., Zhang, J., Sastry, S.S.: Dynamical properties of hybrid automata. IEEE Trans. Automat. Control 48(1), 2–17 (2003)

    Article  MathSciNet  Google Scholar 

  26. Pliś, A.: Trajectories and quasitrajectories of an orientor field. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 11, 369–370 (1963) (in English)

    MATH  Google Scholar 

  27. Prieur, C.: Asymptotic controllability and robust asymptotic stabilizability. SIAM J. Control Optim. 43, 1888–1912 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Prieur, C., Goebel, R., Teel, A.R.: Hybrid feedback control and robust stabilization of nonlinear systems. IEEE Trans. Automat. Control. 52(11), 2103–2117 (2007)

    Article  MathSciNet  Google Scholar 

  29. Rockafellar, R.T., Wets R. J-B.: Variational Analysis. Springer (1998)

  30. Sanfelice, R.G., Goebel, R., Teel, A.R. Generalized solutions to hybrid dynamical systems. ESAIM Control Optim. Calc. Var. (in press)

  31. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34, 435–443 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sontag, E.D.: Clocks and insensitivity to small measurement errors. ESAIM Control Optim. Calc. Var. 4, 537–557 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sontag, E.D., Wang, Y.: On characterizations of the input-to-state stability property. Systems Control Lett. 24, 351–359 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tavernini, L.: Differential automata and their discrete simulators. Nonlinear Anal. 11(6), 665–683 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Goebel.

Additional information

Research supported in part by NSF Grants CCR-0311084 and ECS-0622253 and AFOSR Grant FA9550-06-1-0134.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, C., Goebel, R. & Teel, A.R. Relaxation Results for Hybrid Inclusions. Set-Valued Anal 16, 733–757 (2008). https://doi.org/10.1007/s11228-007-0067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-007-0067-3

Keywords

Mathematics Subject Classifications (2000)

Navigation