Skip to main content
Log in

Context-adaptive and energy-efficient mobile transaction management in pervasive environments

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Pervasive computing is a user-centric, scalable, parallel, and distributed computing paradigm, allowing users to access to their preferred services even while moving around. Transaction management for pervasive environments has to provide mobile users with reliable and transparent services anytime anywhere. To make such a vision a reality, the communication of pervasive transaction processing should be context-aware for adapting to dynamically changing execution environments, and energy-efficient for prolonging the lifetime of battery-powered mobile devices. In this paper, we propose a context model and a context-aware transaction model for pervasive transactions, and present a \(\underline{\mathrm{c}}\) ontext-adaptive and \(\underline{\mathrm{e}}\) nergy-efficient \(\underline{\mathrm{t}}\) ransaction \(\underline{\mathrm{m}}\) anagement mechanism (CETM) that can dynamically adjust transaction execution behaviors in terms of current context information. Moreover, we model and verify the correctness of the CETM through Petri nets. The simulation results have demonstrated that our transaction management mechanism CETM can significantly reduce the failed probability of concurrent pervasive transactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kanter TG (2002) HotTown, enabling context-aware and extensible mobile interactive spaces. IEEE Wirel Commun 9(5):18–27

    Article  Google Scholar 

  2. Ranganathan A, Campbell RH, Ravi A, Mahajan A (2002) ConChat: a context-aware chat program. IEEE Pervasive Comput 1(3):51–57

    Article  Google Scholar 

  3. Bottazzi D, Montanari R, Toninelli A (2007) Context-aware middleware for anytime, anywhere social networks. Intell Syst 22(5):23–32

    Article  Google Scholar 

  4. Rehman K, Stajano F, Coulouris G (2007) An architecture for interactive context-aware applications. IEEE Pervasive Comput 6(1):73–80

    Article  Google Scholar 

  5. Yu ZW, Zhou XS, Zhang DQ (2006) Supporting context-aware media recommendations for smart phones. IEEE Pervasive Comput 5(3):68–75

    Article  Google Scholar 

  6. Tu MH, Li P, Xiao LL (2006) Replica placement algorithms for mobile transaction systems. IEEE Trans Knowl Data Eng 18(7):954–970

    Article  Google Scholar 

  7. Pitoura E, Chrysanthis PK (2002) Multiversion data broadcast. IEEE Trans Comput 51(10):1224–1230

    Article  MathSciNet  Google Scholar 

  8. Chen I, Phan N, Yen I (2002) Algorithms for supporting disconnected write operations for wireless web access in mobile client-server environments. IEEE Trans Mobile Comput 1(1):46–58

    Article  Google Scholar 

  9. Lee V, Son S, Chan E (2002) On transaction processing with partial validation and timestamp ordering in mobile broadcast environments. IEEE Trans Comput 51(10):1196–1211

    Article  MathSciNet  Google Scholar 

  10. Barbará D (1999) Mobile computing and databases—a survey. IEEE Trans Knowl Data Eng 11(1):108–117

    Article  Google Scholar 

  11. Pitoura E, Bhargava BK (1999) Data consistency in intermittently connected distributed systems. IEEE Trans Knowl Data Eng 11(6):896–915

    Article  Google Scholar 

  12. Gray J, Helland P, O’Neil P (1996) The dangers of replication and a solution. ACM SIGMOD Rec 25(2):173–182

    Article  Google Scholar 

  13. Lee M, Helal S (2002) HiCoMo: high commit mobile transactions. Distributed Parallel Databases 11(1):73–92

    Article  MATH  Google Scholar 

  14. Lu Q, Satynarayanan M (1994) Isolation-only transactions for mobile computing. ACM Oper Syst Rev 28(2):81–87

    Article  Google Scholar 

  15. Ku KI, Kim YS (2000) Moflex transaction model for mobile heterogeneous multidatabase systems, Res Issues Data Eng, pp 39–46

  16. Dunham MH, Helal A, Balakrishnan S (1997) A mobile transaction model that captures both the data and movement behavior. Mobile Netw Appl 2(2):149–162

    Article  Google Scholar 

  17. Walborn GD, Chrysanthis PK (1999) Transaction processing in PROMOTION. ACM symposium on applied computing (SAC), pp 389–398

  18. Dirckze RA, Gruenwald L (2000) A pre-serialization transaction management technique for mobile multidatabases. Mobile Netw Appl 5(4):311–321

    Article  MATH  Google Scholar 

  19. Kumar V, Prabhu N, Dunham MH, Seydim AY (2002) TCOT-a timeout-based mobile transaction commitment protocol. IEEE Trans Comput 51(10):1212–1218

    Article  MathSciNet  Google Scholar 

  20. Lim JB, Hurson AR (2002) Transaction processing in mobile, heterogeneous database systems. IEEE Trans Knowl Data Eng 14(6):1330–1346

    Article  Google Scholar 

  21. Franklin M (2001) Challenges in ubiquitous data management. Informatics, pp 24–33

  22. Perich F, Joshi A, Finin T (2004) On data management in pervasive computing environments. IEEE Trans Knowl Data Eng 16(5):621–634

    Article  Google Scholar 

  23. Peterson JL (1977) Petri nets. Comput Surv 9:223–252

    Article  MATH  Google Scholar 

  24. Murata T (1989) Petri nets: properties, analysis and applications. Proceedings of the IEEE, pp 541–580

  25. Heysters P, Smit G, Molenkamp E (2003) A flexible and energy-efficient coarse-grained reconfigurable architecture for mobile systems. J Supercomput 26(3):283–308

    Article  Google Scholar 

  26. Liu M, Cao JN, Zheng Y et al (2008) An energy-efficient protocol for data gathering and aggregation in wireless sensor networks. J Supercomput 43(2)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feilong Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, F., Li, M. Context-adaptive and energy-efficient mobile transaction management in pervasive environments. J Supercomput 60, 62–86 (2012). https://doi.org/10.1007/s11227-009-0277-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-009-0277-6

Keywords

Navigation