Skip to main content
Log in

Tyrosine nitration of human ERK1 introduces an intra-hydrogen bond by molecular dynamics simulations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

ERK1 is an important kinase in Ras–Raf–MEK signaling. We have recently demonstrated by mass spectrometry that Tyr210 of ERK1 can be nitrated, and the nitration leads to a novel CHIP–dependent ERK1 degradation pathway. This motivated us to investigate the effect of this nitration on local and global structures of human ERK1 by Gaussian calculations and molecular dynamics simulations. Our study shows that the nitration at either the CE1 or the CE2 positions introduces an intra-hydrogen bond between the hydroxyl group and the nitro group of the nitrated Tyr210 of ERK1. Our data indicate that the hydrogen bond between Tyr210 and Glu237 is not stable and the nitration of Tyr210 facilitates its breakage. The previous studies demonstrated that ERK1 can be autophosphorylated at tyrosine residue 204. We next studied the effect of the phosphorylation in combination with the nitration. We found that the nitration of Tyr210 modestly decreases its inter-residue electrostatic interactions, and the phosphorylation of Tyr204 increases its inter-residue electrostatic interactions as expected. In the active state of ERK1, the conserved Lys71 forms a salt bridge with the conserved Glu88 and this salt bridge is essential for the activity of ERK1. Our data demonstrate an additional salt bridge for Glu88 with Arg84, and this salt bridge is unphosphorylation-dependent. The phosphorylation of ERK1 with the nitration at CE2, not at CE1, slightly enhances the K71–E88 salt bridge. Collectively, our simulations have demonstrated formation of a tyrosine nitration–dependent hydrogen bond. Our molecular dynamics simulations in combination with the experimental data on the nitration of Tyr210 of ERK1 indicate that a post-translational modification of a protein can specifically alter local structural environments, and a local structural change could lead to changes of protein functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lewis TS, Shapiro PS, Ahn NG (1998) Signal transduction through MAP Kinase Cascades. In: FVW G, George K (eds) Advances in cancer research, vol 74. Academic Press, pp 49–139

  2. Buscà R, Pouysségur J, Lenormand P (2016) ERK1 and ERK2 map kinases: specific roles or functional redundancy? Front Cell Dev Biol 4(53)

  3. Kinoshita T, Yoshida I, Nakae S, Okita K, Gouda M, Matsubara M, Yokota K, Ishiguro H, Tada T (2008) Crystal structure of human mono–phosphorylated ERK1 at Tyr204. Biochem Biophys Res Commun 377(4):1123–1127

    Article  CAS  Google Scholar 

  4. Pagès G, Guérin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P, Pouysségur J (1999) Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286(5443):1374–1377

    Article  Google Scholar 

  5. Yao Y, Li W, Wu J, Germann UA, Su MSS, Kuida K, Boucher DM (2003) Extracellular signal–regulated kinase 2 is necessary for mesoderm differentiation. Proc Natl Acad Sci 100(22):12759–12764

    Article  CAS  Google Scholar 

  6. Seger R, Ahn NG, Boulton TG, Yancopoulos GD, Panayotatos N, Radziejewska E, Ericsson L, Bratlien RL, Cobb MH, Krebs EG (1991) Microtubule–associated protein 2 kinases, ERK1 and ERK2, undergo autophosphorylation on both tyrosine and threonine residues: implications for their mechanism of activation. Proc Natl Acad Sci 88(14):6142–6146

    Article  CAS  Google Scholar 

  7. Panta GR, Du L, Nwariaku FE, Kim LT (2005) Direct phosphorylation of proliferative and survival pathway proteins by RET. Surgery 138(2):269–274

    Article  Google Scholar 

  8. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89(4):2193–2218

    Article  CAS  Google Scholar 

  9. Petersson GA, Al-Laham MA (1991) A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys 94(9):6081–6090

    Article  CAS  Google Scholar 

  10. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145

    Article  CAS  Google Scholar 

  11. Besler BH, Merz KM, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11(4):431–439

    Article  CAS  Google Scholar 

  12. Wang J, Wang W, Kollmann P, Case D (2005) Antechamber, an accessory software PackageFor molecular mechanical calculation. J Comput Chem 25:1157–1174

    Article  Google Scholar 

  13. Case DA, Cheatham 3rd TE, Darden T, Gohlke H, Luo R, Merz Jr KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  Google Scholar 

  14. Homeyer N, Horn AHC, Lanig H, Sticht H (2006) AMBER force–field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J Mol Model 12(3):281–289

    Article  CAS  Google Scholar 

  15. Steinbrecher T, Latzer J, Case DA (2012) Revised AMBER parameters for bioorganic phosphates. J Chem Theory Comput 8(11):4405–4412

    Article  CAS  Google Scholar 

  16. Simmerling C, Strockbine B, Roitberg AE (2002) All–atom structure prediction and folding simulations of a stable protein. J Am Chem Soc 124(38):11258–11259

    Article  CAS  Google Scholar 

  17. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095

    Article  CAS  Google Scholar 

  18. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38 27–38

    Article  CAS  Google Scholar 

  19. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large–scale conformational changes with a modified generalized born model. Proteins 55(2):383–394

    Article  CAS  Google Scholar 

  20. Roskoski Jr R (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66(2):105–143

    Article  CAS  Google Scholar 

  21. Ferrell JE, Bhatt RR (1997) Mechanistic studies of the dual phosphorylation of mitogen–activated protein kinase. J Biol Chem 272(30):19008–19016

    Article  CAS  Google Scholar 

  22. Taylor SS, Kornev AP (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36(2):65–77

    Article  CAS  Google Scholar 

  23. Zhang F, Strand A, Robbins D, Cobb MH, Goldsmith EJ (1994) Atomic structure of the MAP kinase ERK2 at 2.3 a resolution. Nature 367(6465):704–711

    Article  CAS  Google Scholar 

  24. Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ (1997) Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90(5):859–869

    Article  CAS  Google Scholar 

  25. Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46(2):550–559

    Article  CAS  Google Scholar 

  26. Moreno DM, Martí MA, De Biase PM, Estrin DA, Demicheli V, Radi R, Boechi L (2011) Exploring the molecular basis of human manganese superoxide dismutase inactivation mediated by tyrosine 34 nitration. Arch Biochem Biophys 507(2):304–309

    Article  CAS  Google Scholar 

  27. Quint P, Reutzel R, Mikulski R, McKenna R, Silverman DN (2006) Crystal structure of nitrated human manganese superoxide dismutase: mechanism of inactivation. Free Radic Biol Med 40(3):453–458

    Article  CAS  Google Scholar 

  28. Abriata LA, Cassina A, Tórtora V, Marín M, Souza JM, Castro L, Vila AJ, Radi R (2009) Nitration of solvent–exposed tyrosine 74 on cytochrome c triggers heme iron–methionine 80 bond disruption: nuclear magnetic resonance and optical spectroscopy studies. J Biol Chem 284(1):17–26

    Article  CAS  Google Scholar 

  29. Godoy LC, Muñoz-Pinedo C, Castro L, Cardaci S, Schonhoff CM, King M, Tórtora V, Marín M, Miao Q, Jiang JF et al (2009) Disruption of the M80–Fe ligation stimulates the translocation of cytochrome c to the cytoplasm and nucleus in nonapoptotic cells. Proc Natl Acad Sci 106(8):2653–2658

    Article  CAS  Google Scholar 

  30. Lai S, Pelech S (2016) Regulatory roles of conserved phosphorylation sites in the activation T–loop of the MAP kinase ERK1. Mol Biol Cell

  31. Taylor SS, Radzio-Andzelm E (1994) Three protein kinase structures define a common motif. Structure 2(5):345–355

    Article  CAS  Google Scholar 

  32. Johnson LN, Noble MEM, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85(2):149–158

    Article  CAS  Google Scholar 

  33. Kornev AP, Haste NM, Taylor SS, Ten Eyck LF (2006) Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc Natl Acad Sci 103(47):17783–17788

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the comments from Dr. Perkins on this study. The authors also thank the support from University Undergraduate Research Mini-Grant and STEP Awards and the equipment [LEQSF(2015-16)-ENH-TR-34] and software [LEQSF(2017-18)-ENH-TR-31] support from the Enhancement Program of Louisiana Board of Regents. The molecular dynamics simulations and Gaussian calculations of human ERK1 were conducted with high-performance computational resources provided by the Louisiana Optical Network Initiative (LONI) (http://www.loni.org).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu Xu or Yingchun Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 2343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Zhang, Y., Achi, O.Y. et al. Tyrosine nitration of human ERK1 introduces an intra-hydrogen bond by molecular dynamics simulations. Struct Chem 30, 1459–1470 (2019). https://doi.org/10.1007/s11224-019-01306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01306-z

Keywords

Navigation