Skip to main content
Log in

Structural, spectroscopic and docking properties of resorcinol, its -OD isotopomer and dianion derivative: a comparative study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Structural and vibrational properties of resorcinol, its -OD isotopomer and dianion salt were compared with the help of quantum-chemical and spectroscopic techniques. The relative stability computed at the MP4/6-311++G(d,p) level predicted that the syn-syn rotameric form of the resorcinol molecule is about 0.7 kcal/mol higher in energy than the more stable anti-syn and anti-anti forms. Vibrational frequencies calculated for the optimized α-resorcinol and its -OD isotopomer unit cells showed that out-of-plane bending vibrations tend to shift to higher wavenumbers for the solid phase compared to the non-condensed phase indicating strong intermolecular packing forces. OH/OD isotopic shifts were identified for stretching and binding modes, which supported by DFT findings. Infrared, Raman and proton NMR data confirmed a notable change in the overall electronic properties of resorcinol upon the abstraction of the hydroxyl protons. In addition, resorcinol, in its three rotameric configurations, exhibited a stable complexation with keratin-7. While the highly electronegative nature of oxygen atoms contributed effectively to the binding affinity of resorcinol towards keratin-7, careful docking analysis showed that the steric factor play the major role in the keratolytic activity of resorcinol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rodríguez E, Encinas A, Masa FJ, Beltrán FJ (2008) Influence of resorcinol chemical oxidation on the removal of resulting organic carbon by activated carbon adsorption. Chemosphere 70:1366–1374. https://doi.org/10.1016/j.chemosphere.2007.09.035

    Article  Google Scholar 

  2. Zhang JZ, Fischer CJ (2006) A simplified resorcinol method for direct spectrophotometric determination of nitrate in seawater. Mar Chem 99:220–226. https://doi.org/10.1016/j.marchem.2005.09.008

    Article  CAS  Google Scholar 

  3. Husain A, Maaz M, Ansari K, et al (2010) Synthesis and microbiological evaluation of mannich bases derived from 4,6-diacetylresorcinol. J Chil Chem Soc 55:332–334. https://doi.org/10.4067/S0717-97072010000300012

  4. Durairaj RB (2005) Resorcinol: chemistry technology and applications

    Google Scholar 

  5. Robertson JM (1936) The structure of resorcinol a quantitative X-ray investigation. Proc R Soc A Math Phys Eng Sci 157:79–99. https://doi.org/10.1098/rspa.1936.0181

    Article  CAS  Google Scholar 

  6. Robertson JM, Ubbelohde AR (1938) A new form of resorcinol. I. Structure determination by X-rays. Proc R Soc A Math Phys Eng Sci 167:122–135. https://doi.org/10.1098/rspa.1938.0122

    Article  CAS  Google Scholar 

  7. Ebisuzaki Y, Askari LH, Bryan AM, Nicol MF (1987) Phase transitions in resorcinal. J Chem Phys 87:6659. https://doi.org/10.1063/1.453401

    Article  CAS  Google Scholar 

  8. Drużbicki K, Mikuli E, Pałka N, et al. (2015) Polymorphism of resorcinol explored by complementary vibrational spectroscopy (FT-RS, THz-TDS, INS) and first-principles solid-state computations (plane-wave DFT). J Phys Chem B 119:1681–1695. https://doi.org/10.1021/jp507241j

    Article  Google Scholar 

  9. Dunn T (1985) Free-jet spectra and structure of o-, m-, and p-dihydroxybenzenes. Chem Phys Lett 121:453–457

    Article  CAS  Google Scholar 

  10. Gerhards M, Perl W, Kleinermanns K (1995) Rotamers and vibrations of resorcinol obtained by spectral hole burning. Chem Phys Lett 240:506–512. https://doi.org/10.1016/0009-2614(95)00567-N

    Article  CAS  Google Scholar 

  11. Myszkiewicz G, Meerts WL, Ratzer C, Schmitt M (2005) Structure determination of resorcinol rotamers by high-resolution UV spectroscopy. ChemPhysChem 6:2129–2136. https://doi.org/10.1002/cphc.200500243

    Article  CAS  Google Scholar 

  12. Puebla C, Ha TK (1990) A theoretical study of conformations and rotational barriers in dihydroxybenzenes. J Mol Struct THEOCHEM 204:337–351. https://doi.org/10.1016/0166-1280(90)85085-2

  13. Gerhards M, Schiwek M, Unterberg C, Kleinermanns K (1998) OH stretching vibrations in aromatic cations: IR/PIRI spectroscopy. Chem Phys Lett 297:515–522. https://doi.org/10.1016/S0009-2614(98)01152-X

    Article  CAS  Google Scholar 

  14. Day GM, Price SL, Leslie M (2000) Elastic constant calculations for molecular organic crystals. Cryst Growth Des 1:13–27. https://doi.org/10.1021/cg0055070

    Article  Google Scholar 

  15. Berkovitch-Yellin Z (1985) Toward an ab initio derivation of crystal morphology. J Am Chem Soc 107:8239–8253. https://doi.org/10.1021/ja00312a070

    Article  CAS  Google Scholar 

  16. Chatchawalsaisin J, Kendrick J, Tuble SC, Anwar J (2008) An optimized force field for crystalline phases of resorcinol. CrystEngComm. https://doi.org/10.1039/b715494a

  17. Penot D, Mathieu JP (1955) Spectre Raman des Cristaux de Résorcine α et β. J Chim Phys 52:829–833

  18. Hidalgo A, Otero C (1960) Spectres d’absorption infrarouge du phénol et des diphénols. Spectrochim Acta 16:528–539. https://doi.org/10.1016/0371-1951(60)80009-4

  19. Green JHS (1970) Vibrational spectra of benzene derivatives—VI. p-disubstituted compounds. Spectrochim Acta 26A:1503–1513. https://doi.org/10.1016/0584-8539(70)80211-2

    Article  Google Scholar 

  20. Blanco SE, Almandoz MC, Ferretti FH (2005) Determination of the overlapping pKa values of resorcinol using UV-visible spectroscopy and DFT methods. Spectrochim Acta-Part A Mol Biomol Spectrosc 61:93–102. https://doi.org/10.1016/j.saa.2004.03.020

    Article  CAS  Google Scholar 

  21. Rudyk R, Molina MA, Gómez M, et al. (2004) Solvent effects on the structure and dipole moment of resorcinol. J Mol Struct THEOCHEM 674:7–14. https://doi.org/10.1016/j.theochem.2003.12.019

    Article  CAS  Google Scholar 

  22. Wilson WH (1974) The vapor phase infrared spectra of hydroquinone, pyrocatechol, and resorcinol. Spectrochim Acta Part A Mol Spectrosc 30:2141–2152. https://doi.org/10.1016/0584-8539(74)80064-4

  23. Imhof P, Brause R, Kleinermanns K (2002) Determination of ground state vibrational frequencies of jet-cooled resorcinol by means of dispersed fluorescence spectroscopy and ab initio calculations. J Mol Spectrosc 211:65–70. https://doi.org/10.1006/jmsp.2001.8464

    Article  CAS  Google Scholar 

  24. Tripathi GNR (1981) Crystal spectra and vibrational assignments in α-resorcinol. J Chem Phys 74:250. https://doi.org/10.1063/1.440881

    Article  CAS  Google Scholar 

  25. Hattori K, Ishiuchi SI, Howard DL, et al. (2007) Vibrational OH-stretching overtone spectroscopy of jet-cooled resorcinol and hydroquinone rotamers. J Phys Chem A 111:6028–6033. https://doi.org/10.1021/jp071677c

    Article  CAS  Google Scholar 

  26. Kovacs A, Hargittai I (1998) Hydrogen bonding in 2-trifluoromethylresorcinol and 2,6- bis(trifluoromethyl)phenol and its geometrical consequences. J Mol Struct Chem 455:229–238

    Article  CAS  Google Scholar 

  27. Borisenko KB, Hargittai I (1993) Intramolecular hydrogen bonding and molecular structure of 2-nitroresorcinol from gas-phase electron diffraction. J Phys Chem 97:4080–4084. https://doi.org/10.1021/j100118a025

    Article  CAS  Google Scholar 

  28. Bock CW, Hargittai I (1994) Geometrical consequences of resonance-assisted intramolecular hydrogen-bond formation from Ab initio MO calculations on 2-nitroresorcinol. Struct Chem 5:307–312. https://doi.org/10.1007/BF02281221

    Article  CAS  Google Scholar 

  29. Borisenko KB, Bock CW, Hargittai I (1997) Molecular structure and intramolecular hydrogen bonding in 4,6-dinitroresorcinol and 2,5-dinitrohydroquinone from ab initio molecular orbital calculations. J Mol Struct THEOCHEM 393:121–126. https://doi.org/10.1016/S0166-1280(96)04859-2

    Article  CAS  Google Scholar 

  30. Borisenko KB, Zauer K, Hargittai I (1993) Intramolecular hydrogen bonding and molecular structure of 2-nitroresorcinol from gas-phase electron diffraction. J Phys Chem 97:4080–4084. https://doi.org/10.1021/j100118a025

    Article  CAS  Google Scholar 

  31. Bai S, Palmer BJ, Yonker CR (2000) Kinetics of deuterium exchange on resorcinol in D2O at high pressure and high temperature. J Phys Chem A 104:53–58. https://doi.org/10.1021/jp991192r

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP et al (2013) Gaussian 09, Revision D.01. Gaussian, Inc. Wallingford CT

  33. Jamróz MH (2013) Vibrational energy distribution analysis (VEDA): Scopes and limitations. Spectrochim Acta - Part A Mol Biomol Spectrosc 114:220–230. https://doi.org/10.1016/j.saa.2013.05.096

  34. CLC Drug Discovery Workbench 3.0.2 (https://www.qiagenbioinformatics.com/)

  35. Dassault Systèmes BIOVIA (2016) Discovery studio visualizer, v16.1.0.15350. San Diego, Dassault Systèmes

  36. Zhu Q, Shtukenberg AG, Carter DJ, et al. (2016) Resorcinol crystallization from the melt: a new ambient phase and new “riddles.”. J Am Chem Soc 138:4881–4889. https://doi.org/10.1021/jacs.6b01120

    Article  CAS  Google Scholar 

  37. Jemec GBE (2012) Hidradenitis Suppurativa. N Engl J Med 366:158–164. https://doi.org/10.1056/NEJMcp1014163

  38. Buimer MG, Wobbes T, Klinkenbijl JHG (2009) Hidradenitis suppurativa. Br J Surg 96:350–360. https://doi.org/10.1002/bjs.6569

    Article  CAS  Google Scholar 

  39. Guedes IA, de Magalhães CS, Dardenne LE (2014) Receptor–ligand molecular docking. Biophys Rev 6:75–87. https://doi.org/10.1007/s12551-013-0130-2

    Article  CAS  Google Scholar 

  40. Pathak S, Alonso J, Schimpl M, et al. (2015) The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Nat Struct Mol Biol 22:744–750. https://doi.org/10.1038/nsmb.3063

    Article  CAS  Google Scholar 

  41. Kleywegt GJ, Jones TA (1996) Phi/psi-chology: Ramachandran revisited. Structure 4:1395–1400. https://doi.org/10.1016/S0969-2126(96)00147-5

    Article  CAS  Google Scholar 

  42. Horowitz S, Trievel RC (2012) Carbon-oxygen hydrogen bonding in biological structure and function. J Biol Chem 287:41576–41582. https://doi.org/10.1074/jbc.R112.418574

    Article  CAS  Google Scholar 

  43. Trott O, Olson A (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334.AutoDock

    CAS  Google Scholar 

  44. Pecina A, Haldar S, Fanfrlik J, et al. (2017) The SQM/COSMO scoring function at the DFTB3-D3H4 level: unique identification of native protein-ligand poses. J Chem Inf Model 57:127–132. https://doi.org/10.1021/acs.jcim.6b00513

    Article  CAS  Google Scholar 

  45. Onawole AT, Sulaiman KO, Adegoke RO, Kolapo TU (2017) Identification of potential inhibitors against the Zika virus using consensus scoring. J Mol Graph Model 73:54–61. https://doi.org/10.1016/j.jmgm.2017.01.018

Download references

Acknowledgements

Authors thank King Fahd University of Petroleum and Minerals (KFUPM) for its support provided thru the internal project no. IN090040 and the High-Performance Computing (HPC) facilities.

Author information

Authors and Affiliations

Authors

Contributions

The authors certify that this material has not been published in whole or in part elsewhere and that the manuscript is not currently being considered for publication in another journal. All the authors have been personally and actively involved in conducting all tasks leading to the outcome of this manuscript, and they will hold themselves jointly and individually responsible for the content reported

Corresponding author

Correspondence to Abdulaziz A. Al-Saadi.

Ethics declarations

Conflicts of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial support in the subject matter or materials discussed in this manuscript other than that mentioned above.

Electronic supplementary material

ESM 1

(DOCX 232 kb)

ESM 2

(DOCX 49.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onawole, A.T., Abdul Halim, M., Ullah, N. et al. Structural, spectroscopic and docking properties of resorcinol, its -OD isotopomer and dianion derivative: a comparative study. Struct Chem 29, 403–414 (2018). https://doi.org/10.1007/s11224-017-1037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1037-5

Keywords

Navigation