Skip to main content
Log in

Properties, aromaticity, and substituents effects in poly nitro- and amino-substituted benzenes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Geometrical parameters, aromaticity, and conformational flexibility of the set of polysubstituted benzenes with different number and position of nitro and amino groups were calculated at the MP2/cc-pvdz level of theory. The key factor for structural and energetic changes has been identified. This is related to the presence of nitro and amino groups in vicinal positions that forms strong intramolecular resonance-assisted hydrogen bonds with a binding energy of 7–14 kcal/mol. Increasing number of such bonds facilitates a cooperative effect, inducing notable changes in molecular geometry (particularly increasing bond alternation within H2N–C–C–NO2 fragment and planarization of amino group), drastic increasing of conformational flexibility and decreasing of aromaticity. In spite of well-known π-electron effects of nitro and amino substituents, influence of their push–pull interaction through aromatic moiety is negligible compared to the effect of the hydrogen bonding. That results in great difference of the ortho-isomers as compared to meta- and para-isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Krygowski TM, Cyranski MK (2001) Chem Rev 101:1385–1420

    Article  CAS  Google Scholar 

  2. Schleyer PvR (2001) Chem Rev 101:1115–1117

    Article  CAS  Google Scholar 

  3. Stock LM, Brown HC (1963) Adv Phys Org Chem 1:36–154

    Google Scholar 

  4. Hoggett JG, Moodie RB, Penton RB, Schofield K (1971) Nitration and aromatic reactivity. Cambridge University Press, Cambridge

    Google Scholar 

  5. Exner O, Bohm S (2002) J Org Chem 67:6320–6327

    Article  CAS  Google Scholar 

  6. Krygowski TM, Stepien BT (2005) Chem Rev 105:3482–3512

    Article  CAS  Google Scholar 

  7. Krygowski TM, Esmont K, Stepien BT, Cyranski MK, Poater J, Sola M (2004) J Org Chem 69:6634–6640

    Article  CAS  Google Scholar 

  8. Shishkin OV, Omelchenko IV, Krasovska MV, Zubatyuk RI, Gorb L, Leszczynski J (2006) J Mol Struct 791:158–164

    Article  CAS  Google Scholar 

  9. Krygowski TM, Stepien BT, Cyranski MK (2005) Int J Mol Sci 6:45–51

    Article  CAS  Google Scholar 

  10. Smith MB, March J (2001) Advanced organic chemistry. Wiley, New York

    Google Scholar 

  11. Krygowski TM, Dobrowolski MA, Zborowski K, Cyranski MK (2006) J Phys Org Chem 19:889–895

    Article  CAS  Google Scholar 

  12. Roszak S, Gee RH, Balasubramanian K, Fried LE (2003) Chem Phys Lett 374:286

    Article  CAS  Google Scholar 

  13. Lima CFRAC, Gomes LR, Santos LMNBF (2007) J Phys Chem A 111:10598–10603

    Article  CAS  Google Scholar 

  14. Krygowski TM, Palusiak M, Plonka A, Zachara-Horeglad JEJ (2007) Phys Org Chem 20:297–306

    Article  CAS  Google Scholar 

  15. Zhang C (2006) Chem Phys 324:547–555

    Article  CAS  Google Scholar 

  16. Szatylowicz H, Krygowski TM, Hobza P (2007) J Phys Chem A 111:170–175

    Article  CAS  Google Scholar 

  17. Borisenko VE, Krekov SA, MYu Fomenko, Koll A, Lipkovski PJ (2008) Mol Struct 882:9–23

    Article  CAS  Google Scholar 

  18. Gross KC, Seybold PG, Peralta-Inga Z, Murray JS, Politzer P (2001) J Org Chem 66:6919–6925

    Article  CAS  Google Scholar 

  19. Alonso M, Herradon B (2010) Phys Chem Chem Phys 12:1305–1317

    Article  CAS  Google Scholar 

  20. Chermahini AN, Dabbagh HA, Teimouri A (2007) J Mol Struct 822:33–37

    Google Scholar 

  21. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) J Hazard Mater 151:289–305

    Article  CAS  Google Scholar 

  22. Keshavarz MH (2008) J Hazard Mater A 153:201–206

    Article  CAS  Google Scholar 

  23. Takemura N, Shimizu H (1978) Mutat Res 54:256–257

    Article  Google Scholar 

  24. Luther M (1990) Chemosphere 21:231–241

    Article  CAS  Google Scholar 

  25. Levine BF (1976) Chem Phys Lett 37:516–520

    Article  CAS  Google Scholar 

  26. Wolleben J, Testa AC (1977) J Phys Chem 81:429–431

    Article  CAS  Google Scholar 

  27. in het Panhuis M, Munn RW, Popelier PLA (2004) J Chem Phys 120:11479–11486

    Google Scholar 

  28. Wang JX, Gong XD, Xiao HM (2009) Int J Quant Chem 109:1522–1530

    Article  CAS  Google Scholar 

  29. Manaa MR, Gee RH, Fried LE (2002) J Phys Chem A 106:8806–8810

    Article  CAS  Google Scholar 

  30. Gee RH, Roszak S, Balasubramanian K, Fried LE (2004) J Chem Phys 120:7059–7066

    Article  CAS  Google Scholar 

  31. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  32. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  33. Minkin VI, Glukhovtsev MN, Simkin BY (1994) Aromaticity and antiaromaticity. Wiley, New York

    Google Scholar 

  34. Cyranski MK (2005) Chem Rev 105:3773–3811

    Article  CAS  Google Scholar 

  35. Cyranski MK, Krygowski TM, Katritzky AR, Schleyer PvR (2002) J Org Chem 67:1333–1338

    Article  CAS  Google Scholar 

  36. Jug K, Oniciu DC, Katritzky AR (2001) Chem Rev 101:1421–1449

    Article  Google Scholar 

  37. Alonso M, Herradon BJ (2010) Comp Chem 31:917–928

    CAS  Google Scholar 

  38. Poater J, Duran M, Sola M, Silvi B (2005) Chem Rev 105:3911–3947

    Article  CAS  Google Scholar 

  39. Bird CW (1992) Tetrahedron 48:335–340

    Article  CAS  Google Scholar 

  40. Cyranski MK, Krygowski TM (1999) Tetrahedron 55:6205–6210

    Article  Google Scholar 

  41. Chen Z, Wannere CS, Corminboeuf C, Putcha R, Schleyer PvR (2005) Chem Rev 105:3842–3888

    Article  CAS  Google Scholar 

  42. Shishkin OV, KYu Pichugin, Gorb L, Leszczynski J (2002) J Mol Struct 616:159–166

    Article  CAS  Google Scholar 

  43. Zhigalko MV, Shishkin OV, Gorb L, Leszczynski J (2004) J Mol Struct 693:153–159

    Article  CAS  Google Scholar 

  44. Shishkin OV, Gorb L, Lesczynski J (2000) Chem Phys Lett 330:603–611

    Article  CAS  Google Scholar 

  45. Gordy WJ (1947) J Chem Phys 15:305–310

    Article  CAS  Google Scholar 

  46. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Org Lett 8:863–866

    Article  CAS  Google Scholar 

  47. Gaussian 03, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA (2004) Gaussian, Inc., Wallingford CT

  48. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  49. Bader RWF (1990) Atoms in molecules. A quantum theory. Calendon Press, Oxford

    Google Scholar 

  50. Espinosa E, Molina E, Lecomte C (1998) Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  51. Dorofeeva OV, Vishnevskiy YV, Vogt N, Vogt J, Khristenko LV, Krasnoshchekov SV, Shishkov IF, Hargittai I, Vilkov LV (2007) Struct Chem 18:739–753

    Article  CAS  Google Scholar 

  52. Schultz G, Portalone G, Ramondo F, Domenicano A, Hargittai I (1996) Struct Chem 7:59–71

    Article  CAS  Google Scholar 

  53. Sinclair WE, Pratt DW (1996) J Chem Phys 105:7942–7956

    Article  CAS  Google Scholar 

  54. Colapietro M, Domenicano A, Portalone G, Schultz G, Hargittai I (1987) J Phys Chem 91:1728–1737

    Article  CAS  Google Scholar 

  55. Sadova NI, Penionzhkevich NP, Vilkov LV (1976) J Struct Chem (in Russian) 17:954–956

    Article  Google Scholar 

  56. Zych T, Misiaszek T, Szostak MM (2007) Chem Phys 340:260–272

    Article  CAS  Google Scholar 

  57. Colapietro M, Domenicano A, Marciante C, Portalone G (1982) Z Naturforsch 37B:1309–1311

    CAS  Google Scholar 

  58. Qian HY, Yin ZG, Jia J, Zhou N, Feng LQ (2006) Acta Crystallogr 62E:o5048–o5049

    Google Scholar 

  59. Wojcik G, Holband J (2001) Acta Crystallogr 57B:346–352

    Google Scholar 

  60. Woodford JN, Pauley MA, Wang CH (1997) J Phys Chem 101B:1989–1992

    Article  Google Scholar 

  61. Pappalardo RR, Marcos ES, Ruiz-López MF, Rinaldi D, Rivail JL (1993) J Am Chem Soc 115:3722–3730

    Article  CAS  Google Scholar 

  62. Kovacs A, Szabo A, Hargittai I (2002) Acc Chem Res 35:887–894

    Article  CAS  Google Scholar 

  63. Chung G, Kwon O, Kwon Y (1997) J Phys Chem A 101:4628–4632

    Article  CAS  Google Scholar 

  64. Borisenko KB, Zauer K, Hargittai I (1996) J Phys Chem 100:19303–19309

    Article  CAS  Google Scholar 

  65. Gilli G, Belucci F, Ferretti V, Bertolesi V (1989) J Am Chem Soc 111:1023–1028

    Article  CAS  Google Scholar 

  66. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Chem Rev 105:3513–3560

    Article  CAS  Google Scholar 

  67. Manaa MR, Fried LE (2001) J Phys Chem A 105:6765–6768

    Article  CAS  Google Scholar 

  68. Rashid AN (2004) J Mol Struct 681:57–63

    CAS  Google Scholar 

  69. Cohen AJ, Mori-Sanchez P, Yang W (2008) Science 321:792–794

    Article  CAS  Google Scholar 

  70. Allen FH (2002) Acta Cryst B58:380–388

    CAS  Google Scholar 

  71. Fazli M, Raissi H, Chahkandi B, Aarabi M (2010) J Mol Struct 942:115–120

    CAS  Google Scholar 

  72. Wojtulewski S, Grabowski SJ (2003) J Mol Struct 621:285–291

    CAS  Google Scholar 

  73. Huanga Z, Chenb B, Gao G (2005) J Mol Struct 752:87–92

    Article  Google Scholar 

  74. Kimmel AV, Sushko PV, Shluger AL, Kuklja MM (2008) J Phys Chem A 112:4496–4500

    Article  CAS  Google Scholar 

  75. Liu H, Zhao J, Ji G, Wei D, Gong Z (2006) Phys Lett A 358:63–69

    Article  CAS  Google Scholar 

  76. Pravica M, Yulga B, Tkachev S, Liu Z (2009) J Phys Chem A 113:9133–9137

    Article  CAS  Google Scholar 

  77. Wu C, Fried LE (2000) J Phys Chem A 104:6447–6452

    Article  CAS  Google Scholar 

  78. Dobratz BM (1995) The insensitive high explosive triaminotrinitrobenzene (TATB): development and characterizations—1888 to 1994. Los Alamos National Laboratory, Los Alamos

    Book  Google Scholar 

  79. Kotelevskii SI, Prezhdo OV (2001) Tetrahedron 57:5715–5729

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Government. Results in this study were funded and obtained from research conducted under the Environmental Quality Technology Program of the United States Army Corps of Engineers by the USAERDC. Permission was granted by the Chief of Engineers to publish this information. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Omelchenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omelchenko, I.V., Shishkin, O.V., Gorb, L. et al. Properties, aromaticity, and substituents effects in poly nitro- and amino-substituted benzenes. Struct Chem 23, 1585–1597 (2012). https://doi.org/10.1007/s11224-012-9971-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-9971-8

Keywords

Navigation