Skip to main content
Log in

Theoretical investigation on the structural and electronic properties of complexes formed by thymine and 2′-deoxythymidine with different anions

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen bonding interactions between thymine nucleobase and 2′-deoxythymidine nucleoside (dT) with some biological anions such as F (fluoride), Cl (chloride), OH (hydroxide), and NO3 (nitrate) have been explored theoretically. In this study, complexes have been studied by density functional theory (B3LYP method and 6-311++G (d,p) basis set). The relevant geometries, energies, and characteristics of hydrogen bonds (H-bonds) have been systematically investigated. There is a correlation between interaction energy and proton affinity for complexes of thymine nucleobase. The nature of all the interactions has been analyzed by means of the natural bonding orbital (NBO) and quantum theory atoms in molecules (QTAIM) approaches. Donors, acceptors, and orbital interaction energies were also calculated for the hydrogen bonds. Excellent correlations between structural parameter (δR) and electron density topological parameter (ρ b) as well as between E(2) and ρ b have been found. It is interesting that hydrogen bonds with anions can affect the geometry of thymine and 2′-deoxythymidine molecules. For example, these interactions can change the bond lengths in thymine nucleobase, the orientation of base unit with respect to sugar ring, the furanose ring puckering, and the C1′–N1 glycosidic linkage in dT nucleoside. Thus, it is necessary to obtain a fundamental understanding of chemical behavior of nucleobases and nucleosides in presence of anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kolandaivel P, Nirmala V (2004) J Mol Struct 694:33

    Article  CAS  Google Scholar 

  2. Reed AE, Curtiss LA, Weinhold FA (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  3. Dolgounitcheva O, Zakrzewski VG, Ortiz JV (2008) J Phys Chem A 112:10399

    Article  Google Scholar 

  4. Lang LG, Riordan JF, Vallee BL (1974) Biochemistry 13:4361

    Article  Google Scholar 

  5. Chmielewski MJ, Jurczak J (2006) Chem Eur J 12:7652

    Article  CAS  Google Scholar 

  6. Quinonero D, Garau C, Frontera A, Ballester P, Costa A, Deya PM (2002) Chem Phys Lett 359:486

    Article  CAS  Google Scholar 

  7. Beer PD, Gale PA (2001) Angew Chem Int Ed 40:486

    Article  CAS  Google Scholar 

  8. Aliakbar Tehrani Z, Fattahi AR (2009) J Mol Struct THEOCHEM 913:277

    Article  Google Scholar 

  9. Hay BP, Bryantsev VS (2008) Chem Commun 2417

  10. Mascal M, Armstrong A, Bartberger MD (2002) J Am Chem Soc 124:6274

    Article  CAS  Google Scholar 

  11. Hartmann M, Wetmore SD, Radom L (2001) J Phys Chem A 105:4470

    Article  CAS  Google Scholar 

  12. Robinet JJ, Baciu C, Cho K, Gauld JW (2007) J Phys Chem A 111:1981

    Article  CAS  Google Scholar 

  13. Shishkin OV, Palamarchuk GV, Gorb L, Leszczynski J (2006) J Phys Chem B 110:4413

    Article  CAS  Google Scholar 

  14. Lamsabhi AM, Mo O, Yanez M, Boyd RJ (2008) J Chem Theory comput 4:1002

    Article  CAS  Google Scholar 

  15. Auffinger P, Bielecki L, Westhof E (2004) Structure 12:379

    Article  CAS  Google Scholar 

  16. Bader RFW (2002) AIM2000 program package, Ver. 2.0. McMaster University, Hamilton, Ontario, Canada

    Google Scholar 

  17. Spartan 06V102 (2004) Wavefunction, Inc., Irvine, CA, USA, p 399

  18. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford University, Oxford

    Google Scholar 

  19. Liu M, Li T, Sedinam Amegayibor F, Cardoso DS, Fu Y, Lee JK (2008) J Org Chem 73:9283

    Article  CAS  Google Scholar 

  20. Nguyen MT, Chandra, Zeegers-Huyskens T (1998) J Chem Soc Faraday Trans 94:1277

    Article  CAS  Google Scholar 

  21. Huang Y, Kenttämaa H (2003) J Phys Chem A 107:4893

    Article  CAS  Google Scholar 

  22. Kryachko ES, Zeegers-Huyskens T (2002) J Phys Chem A 106:6832

    Article  CAS  Google Scholar 

  23. Shishkin OV, Pelmenschikov A, Hovorun DM, Leszczynski J (2000) J Mol Struct 526:329

    Article  CAS  Google Scholar 

  24. Altona C, Sundaralingam M (1972) J Am Chem Soc 94:8205

    Article  CAS  Google Scholar 

  25. Jeffrey GA, Saenger W (1994) Hydrogen bonding in biological structures. Springer, Heidelberg

    Google Scholar 

  26. Saenger W (1988) Principles of nucleic acid structures. Springer, New York

    Google Scholar 

  27. Galvez O, Gomez PC, Pacios LF (2003) J Chem Phys 118:4878

    Article  CAS  Google Scholar 

  28. Huang Z, Yu L, Dai Y (2010) Int J Quantum Chem. doi:10.1002/qua.22772

  29. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  30. Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835

    Article  CAS  Google Scholar 

  31. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  32. Abboud JLM MOO, De Paz JLG, Yanez M, Esseffar M, Bouab W, El-Mouhtadi M, Mokhlisse R, Ballesteros E, Herreros M, Homan H, Lopez-Mardomingo C, Notario R (1993) J Am Chem Soc 115:12468

    Article  Google Scholar 

  33. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154

    Article  CAS  Google Scholar 

  34. Bader RFW (1991) Chem Rev 91:893

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Support from Sharif University of technology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Fattahi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakourian-Fard, M., Fattahi, A. Theoretical investigation on the structural and electronic properties of complexes formed by thymine and 2′-deoxythymidine with different anions. Struct Chem 23, 17–28 (2012). https://doi.org/10.1007/s11224-011-9837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9837-5

Keywords

Navigation