Skip to main content
Log in

LAMP: The Lyman Alpha Mapping Project on NASA’s Lunar Reconnaissance Orbiter Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Lyman Alpha Mapping Project (LAMP) is a far-ultraviolet (FUV) imaging spectrograph on NASA’s Lunar Reconnaissance Orbiter (LRO) mission. Its main objectives are to (i) identify and localize exposed water frost in permanently shadowed regions (PSRs), (ii) characterize landforms and albedos in PSRs, (iii) demonstrate the feasibility of using natural starlight and sky-glow illumination for future lunar surface mission applications, and (iv) characterize the lunar atmosphere and its variability. As a byproduct, LAMP will map a large fraction of the Moon at FUV wavelengths, allowing new studies of the microphysical and reflectance properties of the regolith. The LAMP FUV spectrograph will accomplish these objectives by measuring the signal reflected from the night-side lunar surface and in PSRs using both the interplanetary HI Lyman-α sky-glow and FUV starlight as light sources. Both these light sources provide fairly uniform, but faint, illumination. With the expected LAMP sensitivity, by the end of the primary 1-year LRO mission, the SNR for a Lyman-α albedo map should be >100 in polar regions >1 km2, providing useful FUV constraints to help characterize subtle compositional and structural features. The LAMP instrument is based on the flight-proven Alice series of spectrographs flying on the Rosetta comet mission and the New Horizons Pluto mission. A general description of the LAMP instrument and its initial ground calibration results are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • J.M. Ajello, A.I. Stewart, G.E. Thomas, A. Graps, Solar cycle study of interplanetary Lyman-alpha variations—Pioneer Venus Orbiter sky background results. Astrophys. J. 317, 964–986 (1987)

    Article  ADS  Google Scholar 

  • J.-L. Bertaux, E. Quémerais, R. Lallement, E. Kyrölä, W. Schmidt, T. Summanen, J.P. Goutail, M. Berthé, J. Costa, T. Holzer, First results from SWAN Lyman alpha solar wind mapper on SOHO. Sol. Phys. 175, 737–770 (1997)

    Article  ADS  Google Scholar 

  • R.J.C. Brown, P.J. Brewer, M.J.T. Milton, The physical and chemical properties of electroless nickel-phosphorus black surfaces. J. Mater. Chem. 12, 2749–2754 (2002)

    Article  Google Scholar 

  • D.B. Campbell, B.A. Campbell, L.M. Carter, J.-L. Margot, N.J.S. Stacy, No evidence for thick deposits of ice at the lunar south pole. Nature 443, 835–837 (2006)

    Article  ADS  Google Scholar 

  • G. Chin, S. Brylow, M. Foote, J. Garvin, J. Kasper, J. Keller, M. Litvak, I. Mitrofanov, D. Paige, K. Raney, M. Robinson, A. Sanin, D. Smith, H. Spence, P. Spudis, S.A. Stern, M. Zuber, Lunar Reconnaissance Orbiter Overview: The instrument suite and mission. Space Sci. Rev. 129, 391–419 (2007)

    Article  ADS  Google Scholar 

  • D.H. Crider, R.R. Vondrak, Space weathering effects on lunar cold trap deposits. J. Geophys. Res. 108(E7), 5079 (2003). doi:10.1029/2002JE002030

    Article  Google Scholar 

  • P.D. Feldman, D. Morrison, The Apollo 17 Ultraviolet Spectrometer: Lunar atmosphere measurements revisited. Geophys. Res. Lett. 18(11), 2105–2108 (1991)

    Article  ADS  Google Scholar 

  • W.C. Feldman, S. Maurice, D.J. Lawrence, R.C. Little, S.L. Lawson, O. Gasnault, R.C. Wiens, B.L. Barraclough, R.C. Elphis, T.H. Prettyman, J.T. Steinberg, A.B. Binder, Evidence for water ice near the lunar poles. J. Geophys. Res. 106, 23231–23251 (2001)

    Article  ADS  Google Scholar 

  • B. Hapke, R. Nelson, W. Smythe, The opposition effect of the Moon: Coherent backscatter and shadow hiding. Icarus 133, 89–97 (1998)

    Article  ADS  Google Scholar 

  • A.R. Hendrix, The Galileo Ultraviolet Spectrometer: in-flight calibration and the ultraviolet albedos of the Moon, Gaspra, Ida and Europa, Ph.D. thesis, University of Colorado, Boulder, 1996

  • A.R. Hendrix, C.J. Hansen, Ultraviolet observations of Phoebe from the Cassini UVIS. Icarus 193, 323–333 (2008)

    Article  ADS  Google Scholar 

  • R.C. Henry, P.D. Feldman, J.W. Kruk, A.F. Davidsen, S.T. Durrance, Ultraviolet albedo of the Moon with the Hopkins Ultraviolet Telescope. Astrophys. J. 454, L69–L72 (1995)

    Article  ADS  Google Scholar 

  • R.C. Henry, The local interstellar ultraviolet radiation field. Astrophys. J. 570, 697–707 (2002)

    Article  ADS  Google Scholar 

  • R.R. Hodges, Formation of the lunar atmosphere. Moon 14, 139–157 (1975)

    Article  ADS  Google Scholar 

  • R.R. Hodges, Reanalysis of Lunar Prospector neutron spectrometer observations over the lunar poles. J. Geophys. Res. 107, 5125 (2002). doi:10.1029/2000JE001483

    Article  Google Scholar 

  • R.R. Hodges, J.H. Hoffman, F.S. Johnson, The lunar atmosphere. Icarus 21, 415–426 (1974)

    Article  ADS  Google Scholar 

  • P. Jelinsky, S. Jelinsky, Low reflectance EUV materials: a comparative study. Appl. Opt. 26(4), 613–615 (1987)

    Article  ADS  Google Scholar 

  • R.M. Killen, Source and maintenance of the argon atmospheres of Mercury and the Moon. Meteorit Planet. Sci. 37(9), 1223–1231 (2002)

    Article  ADS  Google Scholar 

  • J. Mathis, P. Mezger, N. Panagia, Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. Astron. Astrophys. 128, 212–229 (1983)

    ADS  Google Scholar 

  • M. Mendillo, The atmosphere of the Moon. Earth Moon Planets 85/86, 271–277 (2001)

    Article  ADS  Google Scholar 

  • K.A. Moldosanov, M.A. Samsonov, L.S. Kim, R. Henneck, O.H.W. Siegmund, J. Warren, S. Cully, D. Marsh, Highly absorptive coating for the vacuum ultraviolet range. Appl. Opt. 37(1), 93–97 (1998)

    Article  ADS  Google Scholar 

  • T.H. Morgan, D.E. Shemansky, Limits to the lunar atmosphere. J. Geophys. Res. 96, 1351–1367 (1991)

    Article  ADS  Google Scholar 

  • National Research Council, The Scientific Context for Exploration of the Moon (The National Academies Press, Washington, 2007), 120 pp.

    Google Scholar 

  • J. Parker, S.A. Stern, G.R. Gladstone, J. Shull, The spectroscopic detectability of argon in the lunar atmosphere. Astrophys. J. 509, L61–L64 (1998)

    Article  ADS  Google Scholar 

  • W.R. Pryor, P. Gangopadhyay, B. Sandel, T. Forrester, E. Quemerais, E. Moebius, L. Esposito, A.I.F. Stewart, B. McClintock, A. Jouchoux, J. Colwell, V. Izmodenov, Y. Malena, W.K. Tobiska, D.E. Shemansky, J.M. Ajello, C. Hansen, M. Bzowski, P. Frisch, Radiation transport of heliospheric Lyman-alpha from combined Cassini and Voyager data sets. Astron. Astrophys. 491, 21–28 (2008)

    Article  ADS  Google Scholar 

  • P.H. Schultz, M.I. Staid, C.M. Pieters, Lunar activity from recent gas release. Nature 444, 184–186 (2006)

    Article  ADS  Google Scholar 

  • O.H.W. Siegmund, Microchannel plate imaging detector technologies for UV instruments, in Conference Proceedings From X-rays to X-band—Space Astrophysics Detectors and Detector Technologies (Space Telescope Science Institute, 2000)

  • O.H.W. Siegmund, J. Stock, R. Raffanti, D. Marsh, M. Lampton, Planar delay line readouts for high resolution astronomical EUV/UV spectroscopy, in UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas, Proceedings from the 10th International Colloquium, Berkeley, CA, 3–5 February 1992 (1992), pp. 383–386

  • R.A. Simpson, G.L. Tyler, Reanalysis of Clementine bistatic radar data from the lunar south pole. J. Geophys. Res. 104, 3845–3862 (1999)

    Article  ADS  Google Scholar 

  • D.C. Slater, S.A. Stern, T. Booker, J. Scherrer, M.F. A’Hearn, J.L. Bertaux, P.D. Feldman, M.C. Festou, O.H.W. Siegmund, Radiometric and calibration performance results for the Rosetta UV imaging spectrometer Alice, in UV/EUV and Visible Space Instrumentation for Astronomy and Solar Physics, ed. by O.H.W. Siegmund, S. Fineschi, M.A. Gummin. Proceedings of SPIE, vol. 4498 (SPIE, Bellingham, 2001), pp. 239–247

    Google Scholar 

  • D.C. Slater, M.W. Davis, C.B. Olkin, S.A. Stern, J. Scherrer, Radiometric performance results of the New Horizons’ Alice UV imaging spectrograph, in X-Ray, UV, Visible, and IR Instrumentation for Planetary Missions, ed. by O.H.W. Siegmund, G.R. Gladstone. Proceedings of SPIE, vol. 5906B (SPIE, Bellingham, 2005)

    Google Scholar 

  • S.A. Stern, The lunar atmosphere: history, status, current problems, and context. Rev. Geophys. 37, 453–491 (1999)

    Article  ADS  Google Scholar 

  • S.A. Stern, D.C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J.-L. Bertaux, P.D. Feldman, M.C. Festou, Alice: an ultraviolet imaging spectrometer for the Rosetta Orbiter. Adv. Space Res. 21, 1517–1525 (1998)

    Article  ADS  Google Scholar 

  • S.A. Stern, J.R. Scherrer, D.C. Slater, G.R. Gladstone, L.A. Young, G.J. Dirks, J.M. Stone, M.W. Davis, Alice: The ultraviolet imaging spectrograph aboard the New Horizons spacecraft, in X-Ray, UV, Visible, and IR Instrumentation for Planetary Missions, ed. by O.H.W. Siegmund, G.R. Gladstone. Proceedings of SPIE, vol. 5906B (SPIE, Bellingham, 2005)

    Google Scholar 

  • S.A. Stern, D.C. Slater, J.R. Scherrer, J.M. Stone, G.J. Dirks, M.H. Versteeg, M.W. Davis, G.R. Gladstone, J.Wm. Parker, L.A. Young, O.H.W. Siegmund, Alice: the ultraviolet imaging spectrograph aboard the New Horizons Pluto-Kuiper Belt mission. Space Sci. Rev. 140, 155–187 (2008)

    Article  ADS  Google Scholar 

  • A.R. Vasavada, D.A. Paige, S.E. Wood, Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus 141, 179–193 (1999)

    Article  ADS  Google Scholar 

  • R.R. Vondrak, Lunar base activities and the lunar environment. LPI Contribution 652, 246 (1988)

    ADS  Google Scholar 

  • R.R. Vondrak, J.W. Freeman, R.A. Lindeman, Measurements of lunar atmospheric loss rate, in Proc. 5th Lunar Sci. Conf. (1974), p. 2945

  • J.K. Wagner, B.W. Hapke, E.N. Wells, Atlas of reflectance spectra of terrestrial, lunar, and meteoritic powders and frosts from 92 to 1800 nm. Icarus 69, 14–28 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Randall Gladstone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gladstone, G.R., Stern, S.A., Retherford, K.D. et al. LAMP: The Lyman Alpha Mapping Project on NASA’s Lunar Reconnaissance Orbiter Mission. Space Sci Rev 150, 161–181 (2010). https://doi.org/10.1007/s11214-009-9578-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9578-6

Navigation