Skip to main content

Advertisement

Log in

Correlation Between the Magnetic Field and Plasma Parameters at 1 AU

  • Earth-affecting Solar Transients
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The physical parameters of the solar wind observed in-situ near 1 AU have been studied for several decades, and relationships between them, such as the positive correlation between the solar wind plasma temperature, \(T\), and velocity, \(V\), and the negative correlation between density, \(N\), and velocity, \(V\), are well known. However, the magnetic field intensity, \(B\), does not appear to be well correlated with any individual plasma parameter. In this article, we discuss previously under-reported correlations between \(B\) and the combined plasma parameters \(\sqrt{N V^{2}} \) as well as between \(B\) and \(\sqrt{NT}\). These two correlations are strong during periods of corotating interaction regions and high-speed streams, and moderate during intervals of slow solar wind. The results indicate that the magnetic pressure in the solar wind is well correlated both with the plasma dynamic pressure and the thermal pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Borrini, G., Gosling, J.T., Bame, S.J., Feldman, W.C., Wilcox, J.M.: 1981, Solar wind helium and hydrogen structure near the heliospheric current sheet: a signal of coronal streamers at 1 AU. J. Geophys. Res. 86, 4565. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Ogilvie, K.W.: 1970a, Heating of the solar wind. Astrophys. J. 159, 659. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Ogilvie, K.W.: 1970b, Magnetic and thermal pressures in the solar wind. Solar Phys. 15, 61. DOI .

    Article  ADS  Google Scholar 

  • Brekke, P., Fleck, B., Gurman, J.B. (eds.): 2001, Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and other Space Missions. IAU Symp. 203.

  • Coleman, P.J.: 1966, Variations in the interplanetary magnetic field: Mariner 2: 1. Observed properties. J. Geophys. Res. 71, 5509. DOI .

    Article  ADS  Google Scholar 

  • Chat, G.L., Issautier, K., Meyer-Vernet, N.: 2012, The solar wind energy flux. Solar Phys. 279, 197. DOI .

    Article  ADS  Google Scholar 

  • Elliott, H.A., McComas, D.J., Schwadron, N.A., Gosling, J.T., Skoug, R.M., Gloeckler, G., et al.: 2005, An improved expected temperature formula for identifying interplanetary coronal mass ejections. J. Geophys. Res. 110, A04103. DOI .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Hundhausen, A.J., Pizzo, V., Asbridge, J.R.: 1972, Compressions and rarefactions in the solar wind: Vela 3. J. Geophys. Res. 77, 5442. DOI .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Asbridge, J.R., Bame, S.J., Feldman, W.C.: 1978, Solar wind stream interfaces. J. Geophys. Res. 83, 1401. DOI .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21. DOI .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J., Bame, S.J., Asbridge, J.R., Sydoriak, S.J.: 1970, Solar wind proton properties: Vela 3 observations from July 1965 to June 1967. J. Geophys. Res. 75, 4643. DOI .

    Article  ADS  Google Scholar 

  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393. DOI .

    Article  ADS  Google Scholar 

  • Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613. DOI .

    Article  ADS  Google Scholar 

  • Lopez, R.E., Freeman, J.W.: 1986, Solar wind proton temperature–velocity relationship. J. Geophys. Res. 91, 1701. DOI .

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., Elliott, H.A., McComas, D.J.: 2006, Correlation of speed and temperature in the solar wind. J. Geophys. Res. 111, A10103. DOI .

    Article  ADS  Google Scholar 

  • Ness, N.F., Hundhausen, A.J., Bame, S.J.: 1971, Observations of the interplanetary medium: Vela 3 and IMP 3, 1965–1967. J. Geophys. Res. 76, 6643. DOI .

    Article  ADS  Google Scholar 

  • Neugebauer, M., Snyder, C.W.: 1966, Mariner 2 observations of the solar wind: 1. Average properties. J. Geophys. Res. 71, 4469. DOI .

    Article  ADS  Google Scholar 

  • Neugebauer, M., Snyder, C.W.: 1967, Mariner 2 observations of the solar wind: 2. Relation of plasma properties to the magnetic field. J. Geophys. Res. 72, 1823. DOI .

    Article  ADS  Google Scholar 

  • Obridko, V.N., Shelting, B.D.: 2011, Relationship between the parameters of coronal holes and high-speed solar wind streams over an activity cycle. Solar Phys. 270, 297. DOI .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664. DOI .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1963, Interplanetary Dynamical Processes, Interscience Publishers, New York.

    MATH  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 1995, Regions of abnormally low proton temperature in the solar wind (1965 – 1991) and their association with ejecta. J. Geophys. Res. 100, 23397. DOI .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2004, The fraction of interplanetary coronal mass ejections that are magnetic clouds: evidence for a solar cycle variation. Geophys. Res. Lett. 31, L18804. DOI .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Webb, D.F., Zhang, J., Berdichevsky, D.B., Biesecker, D.A., Kasper, J.C., et al.: 2006, Major geomagnetic storms (\(Dst \leq -100\ \text{nT}\)) generated by corotating interaction regions. J. Geophys. Res. 111, A07S09. DOI .

    Article  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. DOI .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2012, Near-Earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963 – 2011). J. Space Weather Space Clim. 2, A02. DOI .

    Google Scholar 

  • Richardson, J.D., Dashevskiy, F., Paularena, K.I.: 1998, Solar wind plasma correlations between L1 and Earth. J. Geophys. Res. 103, 14619. DOI .

    Article  ADS  Google Scholar 

  • Richardson, J.D., Paularena, K.I.: 2001, Plasma and magnetic field correlations in the solar wind. J. Geophys. Res. 106, 239. DOI .

    Article  ADS  Google Scholar 

  • Riley, P., Schatzman, C., Cane, H.V., Richardson, I.G., Gopalswamy, N.: 2006, On the rates of coronal mass ejections: remote solar and in situ observations. Astrophys. J. 647, 648. DOI .

    Article  ADS  Google Scholar 

  • Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Relation between coronal hole areas on the sun and the solar wind parameters at 1 AU. Solar Phys. 281, 793. DOI .

    Article  ADS  Google Scholar 

  • Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B.: 2015, Real-time solar wind prediction based on SDO/AIA coronal hole data. Solar Phys. 290, 1355. DOI .

    Article  ADS  Google Scholar 

  • Russell, C.T., Siscoe, G.L., Smith, E.J.: 1980, Comparison of ISEE-1 and -3 interplanetary magnetic field observations. Geophys. Res. Lett. 7, 381. DOI .

    Article  ADS  Google Scholar 

  • Sarabhai, V.: 1963, Some consequences of non-uniformity of solar wind velocity. J. Geophys. Res. 68, 1555. DOI .

    Article  ADS  Google Scholar 

  • Steinitz, R., Eyni, M.: 1980, Global properties of the solar wind. I. The invariance of the momentum flux density. Astrophys. J. 241, 417. DOI .

    Article  ADS  Google Scholar 

  • Schwenn, R., Marsch, E. (eds.): 1990, Physics of the Inner Heliosphere I. Large-Scale Phenomena, Springer, New York.

    Google Scholar 

  • Schwenn, R.: 2006, Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 124, 51. DOI .

    Article  ADS  Google Scholar 

  • Verbanac, G., Vršnak, B., Veronig, A., Temmer, M.: 2011a, Equatorial coronal holes, solar wind high-speed streams, and their geoeffectivness. Astron. Astrophys. 526, 20. DOI .

    Article  ADS  Google Scholar 

  • Verbanac, G., Vršnak, B., Živković, S., Hojsak, T., Veronig, A.M., Temmer, M.: 2011b, Solar wind high-speed streams and related geomagnetic activity in the declining phase of solar Cycle 23. Astron. Astrophys. 533, 49. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Temmer, M., Veronig, A.M.: 2007, Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Solar Phys. 240, 315. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.M.: 2010, On the relative constancy of the solar wind mass flux at 1 AU. Astrophys. J. Lett. 715, L121. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R.: 2013, The solar wind and interplanetary field during very low amplitude sunspot cycles. Astrophys. J. 764, 90. DOI .

    Article  ADS  Google Scholar 

  • Wilcox, J.M.: 1966, Solar and interplanetary magnetic fields. Science 152, 161. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J., et al.: 2007, Correction to “solar and interplanetary sources of major geomagnetic storms (\(Dst, \leq -100\ \text{nT}\)) during 1996 – 2005. J. Geophys. Res. 112, A10102. DOI .

    Article  ADS  Google Scholar 

  • Zirker, J.B.: 1977, Coronal holes and high-speed wind streams. Rev. Geophys. 15, 257. DOI .

    Article  ADS  Google Scholar 

  • Zastenker, G.N., Dalin, P.A., Petrukovich, A.A., Nozdrachev, M.N., Romanov, S.A., Paularena, K.I., et al.: 2000, Solar wind structure dynamics by multipoint observations. Phys. Chem. Earth 25, 137. DOI .

    Google Scholar 

Download references

Acknowledgements

We acknowledge the use of solar wind data obtained from the GSFC/SPDF OMNI Web interface at http://omniweb.gsfc.nasa.gov . This work is jointly supported by grants from the National Natural Science Foundation of China (41474152, 41531073 and 41774184), and the Specialized Research Fund for State Key Laboratories. FS is also supported by the National Program for Support of Top-notch Young Professionals. JZ is supported by NSF AGS-1249270 and AGS-1460188. IGR acknowledges support from the ACE project. We are also grateful to the anonymous reviewer for the constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Shen.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Earth-affecting Solar Transients

Guest Editors: Jie Zhang, Xochitl Blanco-Cano, Nariaki Nitta, and Nandita Srivastava

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Shen, F., Zhang, J. et al. Correlation Between the Magnetic Field and Plasma Parameters at 1 AU. Sol Phys 293, 24 (2018). https://doi.org/10.1007/s11207-017-1238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1238-5

Keywords

Navigation