Skip to main content
Log in

Evaluation of Tomato Plants with Constitutive, Root-Specific, and Stress-Induced ACC Deaminase Gene Expression

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Transgenic tomato (Lycopersicon esculentum Mill, cv. Heinz 902) plants expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase were compared with nontransformed plants in a number of traits that are thought to be affected by ACC and ethylene in plant tissues. In the transgenic plants, the ACC deaminase gene was under the transcriptional control of either two tandem 35S cauliflower mosaic virus promoters (constitutive expression), the rolD promoter from Agrobacterium rhizogenes (root-specific expression), or the PRB-1b promoter from tobacco (stress-induced expression). The parameters that were examined included plant growth, leaf fluorescence, protein and chlorophyll content, fruit weight, and also lycopene and β-carotene fruit content. Expression of ACC deaminase affected a number of these characteristics with the 35S and rolD promoters generally behaving similarly to one another and differently from either the nontransformed or the PRB-1b plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC:

1-aminocyclopropane-1-carboxylic acid

IR:

infrared

PSII:

photosystem II

WT:

wild type

REFERENCES

  1. Honma, M. and Shimomura, T., Metabolism of 1-Aminocyclopropane-1-Carboxylic Acid, Agr. Biol. Chem. (Tokyo), 1978, vol. 42, pp. 1825–1831.

    CAS  Google Scholar 

  2. Glick, B.R., Penrose, D.M., and Li, J., A Model for the Lowering of Plant Ethylene Concentrations by Plant Growth Promoting Bacteria, J. Theor. Biol., 1998, vol. 190, pp. 63–68.

    CAS  PubMed  Google Scholar 

  3. Hall, J.A., Peirson, D., Ghosh, S., and Glick, B.R., Root Elongation in Various Agronomic Crops by the Plant Growth Promoting Rhizobacterium Pseudomonas putida GR12-2, Israel J. Plant Sci., 1996, vol. 44, pp. 37–42.

    Google Scholar 

  4. Grichko, V.P. and Glick, B.R., Flooding Tolerance of Transgenic Tomato Plants Expressing the Bacterial Enzyme ACC Deaminase Controlled by the 35S, rolD, or PRB-1b Promoter, Plant Physiol. Bioch., 2001, vol. 39, pp. 19–25.

    CAS  Google Scholar 

  5. Klee, H.J., Hayford, M.B., Kaetzmer, K.A., Barry, G.F., and Kishore, G.M., Control of Ethylene Synthesis by Expression of a Bacterial Enzyme in Transgenic Tomato Plants, Plant Cell, 1991, vol. 3, pp. 1187–1193.

    CAS  PubMed  Google Scholar 

  6. Lund, S.T., Stall, R.E., and Klee, H.J., Ethylene Regulates the Susceptible Response to Pathogen Infection in Tomato, Plant Cell, 1998, vol. 10, pp. 371–382.

    CAS  PubMed  Google Scholar 

  7. Robison, M.M., Shah, S., Tamot, B., Pauls, K.P., Moffatt, B.A., and Glick, B.R., Reduced Symptoms of Verticillium Wilt in Transgenic Tomato Expressing a Bacterial ACC Deaminase, Mol. Plant Pathol., 2001, vol. 2, pp. 135–145.

    CAS  Google Scholar 

  8. Shah, S., Li, J., Moffatt, B.A., and Glick, B.R., Isolation and Characterization of ACC Deaminase Genes from Two Different Plant Growth Promoting Rhizobacteria, Can. J. Microbiol., 1998, vol. 44, pp. 833–843.

    CAS  PubMed  Google Scholar 

  9. Christopher, L.S., Byrd, A.D., Benzion, G., Altschuler, M.A., Hildebrand, D., and Hunt, A.G., Design and Construction of a Versatile System for the Expression of Foreign Genes in Plants, Gene, 1987, vol. 61, pp. 1–11.

    PubMed  Google Scholar 

  10. Elmayan, T. and Tepfer, M., Evaluation in Tobacco of the Organ Specificity and Strength of the rolD Promoter, Domain A of the 35S Promoter and the 35S2 Promoter, Transgenic Res., 1995, vol. 4, pp. 388–396.

    CAS  PubMed  Google Scholar 

  11. Eyal, Y., Sagee, O., and Fluhr, R., Dark Induced Accumulation of a Basic Pathogenesis-Related (PR-1) Transcript and a Light Requirement for Its Induction by Ethylene, Plant Mol. Biol., 1992, vol. 19, pp. 589–599.

    CAS  PubMed  Google Scholar 

  12. Picton, S., Barton, S.L., Bouzayen, M., Hamilton, A.J., and Grierson, D., Altered Fruit Ripening and Leaf Senescence in Tomatoes Expressing an Antisense Ethylene-Forming Enzyme Transgene, Plant J., 1993, vol. 3, pp. 469–481.

    CAS  Google Scholar 

  13. Good, X., Kellogg, J.A., Wagoner, W., Langhoff, D., Matsumura, W., and Bestwick, R.K., Reduced Ethylene Synthesis by Transgenic Tomatoes Expressing S-Adenosylmethionine Hydrolase, Plant Mol. Biol., 1994, vol. 26, pp. 781–790.

    CAS  PubMed  Google Scholar 

  14. John, I., Drake, R., Farrell, A., Cooper, W., Lee, P., Horton, P., and Grierson, D., Delayed Leaf Senescence in Ethylene-Deficient ACC-Oxidase Antisense Tomato Plants: Molecular and Physiological Analysis, Plant J., 1995, vol. 7, pp. 483–490.

    CAS  Google Scholar 

  15. Dumbroff, E.B. and Gepstein, S., Immunological Methods for Assessing Protein Expression in Plants, Methods in Plant Molecular Biology and Biotechnology, Glick, B.R. and Thompson, J.E., Eds., Boca Raton: CRC, 1993, pp. 207–223.

    Google Scholar 

  16. Bradford, M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    CAS  PubMed  Google Scholar 

  17. Hiscox, J.D. and Israelstam, G.F., A Method for the Extraction of Chlorophyll from Leaf Tissue without Maceration, Can. J. Bot., 1978, vol. 57, pp. 1332–1334.

    Google Scholar 

  18. Tereshina, V.M., Memorskaya, A.S., and Feofilova, E.P., Express Method for Determining the Lycopene and β-carotene content, Mikrobiologiya, 1994, vol. 63, pp. 630–633.

    Google Scholar 

  19. Minami, R., Uchiyama, K., Murakami, T., Kawai, J., Mikamii, K., Yamada, T., Yokoi, D., Ito, H., Matsui, H., and Honma, M., Properties, Sequence, and Synthesis in Escherichia coli of 1-Aminocyclopropane-1-Carboxylate Deaminase from Hansenula saturnus, J. Biochem., 1998, vol. 123, pp. 1112–1118.

    CAS  PubMed  Google Scholar 

  20. Jia, Y.J., Kakuta, Y., Sugawara, M., Igarashi, T., Oki, N., Kisaki, M., Shoji, T., Kanetuna, Y., Horita, T., Matsui, H., and Honma, M., Synthesis and Degradation of 1-Aminocyclopropane-1-Carboxylic Acid by Penicillium citrinum, Biosci. Biotech. Bioch., 1999, vol. 63, pp. 542–549.

    CAS  Google Scholar 

  21. Knoester, M., van Loon, L.C., van Den, H.J., Hennig, J., Bol, J.F., and Linthorst, H.J.M., Ethylene-Insensitive Tobacco Lacks Non-Host Resistance against Soil-Borne Fungi, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 1933–1937.

    CAS  PubMed  Google Scholar 

  22. Abeles, F.B., Morgan, P.W., and Salveit, M.E., Jr., Ethylene in Plant Biology, San Diego: Academic, 1992.

    Google Scholar 

  23. Roman, G., Lubarsky, B., Kieber, J.J., Rothenberg, M., and Ecker, J.R., Genetic Analysis of Ethylene Signal Transduction in Arabidopsis thaliana: Five Novel Mutant Loci Integrated into a Stress Response Pathway, Genetics, 1995, vol. 139, pp. 1393–1409.

    CAS  PubMed  Google Scholar 

  24. Agati, G., Mazzinghi, P., Fusi, F., and Ambrosini, I., The F 685/F 730 Chlorophyll Fluorescence Ratio as a Tool in Plant Physiology: Response to Physiological and Environmental Factors, Plant Physiol. 1995, vol. 145, pp. 228–238.

    CAS  Google Scholar 

  25. Grichko, V.P., Filby, B., and Glick, B.R., Increased Ability of Transgenic Plants Expressing the Bacterial Enzyme ACC Deaminase to Accumulate Cd, Co, Cu, Ni, Pb and Zn, J. Biotechnol., 2000, vol. 81, pp. 45–53.

    CAS  PubMed  Google Scholar 

  26. Jensen, E.B. and Veierskov, B., Interaction between Photoperiod, Photosynthesis and Ethylene Formation in Tomato Plants (Lycopersicon esculentum cv. Alisa Craig) and ACC-Oxidase Antisense pTOM13, Physiol. Plant., 1998, vol. 103, pp. 363–368.

    CAS  Google Scholar 

  27. Mehta, R.A., Zhou, D., Tucker, M., Handa, A., Solomos, T., and Mattoo, A.K., Ethylene in Higher Plants: Biosynthetic Interactions with Polyamines and High-Temperature-Mediated Differential Induction of NR versus TAE1 Ethylene Receptor, Biology and Biotechnology of the Plant Hormone Ethylene II, Kanellis, A.K., Chang, C., Klee, H., Bleecker, A.B., Pech, J.C., and Grierson, D., Eds., Dordrecht: Kluwer, 1998, pp. 387–393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

From Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 406–411.

Original English Text Copyright © 2005 by Grichko, Glick, Grishko, Pauls.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grichko, V.P., Glick, B.R., Grishko, V.I. et al. Evaluation of Tomato Plants with Constitutive, Root-Specific, and Stress-Induced ACC Deaminase Gene Expression. Russ J Plant Physiol 52, 359–364 (2005). https://doi.org/10.1007/s11183-005-0054-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11183-005-0054-1

Key words

Navigation