Skip to main content
Log in

Adsorption of toluene and acetone vapors on microwave-prepared activated carbon from agricultural residues: isotherms, kinetics, and thermodynamics studies

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Activated carbons produced with agricultural residues have attracted substantial attention in recent years. However, much work remains to be done. The current study determined the adsorption isotherms for toluene and acetone vapors for pinewood chip-derived activated carbon. The effects on the physical properties, such as the porous structures of the adsorbents, were also investigated using scanning electron microscopy (SEM). The results indicate that the activated carbon is a mainly microporous structure with a micropore volume of 0.701 cc/g (75.1 % of the total pore volume). The adsorption capacities of toluene and acetone can be as high as 0.71 and 0.57 g/g at room temperature, respectively. The adsorption isotherms for toluene and acetone vapors were obtained from 25 to 45 °C, with relative pressures between 0.01 and 0.9. As the temperature increased, the adsorption capacity decreased. This behavior indicates that the adsorption process is physical adsorption. The fitted isotherms using the Dubinin–Radushkevich adsorption models exhibited low mean total relative errors. The fitted isotherms obtained using the Dubinin–Radushkevich adsorption models had mean total relative errors of 3.3 and 4.1 % for the adsorption of toluene and acetone, respectively, at temperatures ranging from 25 to 45 °C. The results of this study may be highly significant because they provide a more accurate prediction of the adsorption capacities of the adsorbents, thus improving the design of adsorption systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.Y. Foo, B.H. Hammed, Bioresour. Technol. 111, 425–432 (2012)

    Article  CAS  Google Scholar 

  2. K.Y. Foo, B.H. Hameed, Chem. Eng. J. 180, 66–74 (2012)

    Article  CAS  Google Scholar 

  3. K.Y. Foo, B.H. Hameed, Bioresour. Technol. 103, 398–404 (2012)

    Article  CAS  Google Scholar 

  4. K.Y. Foo, B.H. Hameed, Microporous Mesoporous Mater. 148, 191–195 (2012)

    Article  CAS  Google Scholar 

  5. K.Y. Foo, B.H. Hameed, Bioresour. Technol. 102, 9814–9817 (2011)

    Article  CAS  Google Scholar 

  6. K.Y. Foo, B.H. Hameed, Bioresour. Technol. 112, 143–150 (2012)

    Article  CAS  Google Scholar 

  7. K.Y. Foo, B.H. Hameed, Chem. Eng. J. 187, 53–62 (2012)

    Article  CAS  Google Scholar 

  8. M.J. Saif, K.M. Zia, Fazal-ur-Rehman, M. Usman, A.I. Hussain, S.A.S. Chatha, Water Environ. Res. 87, 291–297 (2015)

    Article  CAS  Google Scholar 

  9. H.Y. Mao, D.G. Zhou, Z. Hashisho, S.G. Wang, H. Chen, H.Y. Wang, M. Jahandar Lashaki, RCS Adv 5, 36051–36058 (2015)

    CAS  Google Scholar 

  10. H.Y. Mao, D.G. Zhou, Z. Hashisho, S.G. Wang, H. Chen, H.Y. Wang, BioResources 10, 245–253 (2015)

    Google Scholar 

  11. H.Y. Mao, D.G. Zhou, Z. Hashisho, S.G. Wang, H. Chen, H.Y. Wang, J. Ind. Eng. Chem. 21, 516–525 (2015)

    Article  CAS  Google Scholar 

  12. Masoud Jahandar Lashaki, Mohammadreza Fayaz, Zaher Hashisho. J. Hazard. Mater. 241–242, 154–163 (2012)

    Article  Google Scholar 

  13. A.F. Dolidovich, G.S. Akhremkova, V.S. Efremtsev, Can. J. Chem. Eng. 77, 342 (1999)

    Article  CAS  Google Scholar 

  14. M.C. Huang, C.H. Chou, H. Teng, AIChE J. 48, 1804 (2002)

    Article  CAS  Google Scholar 

  15. C. Tien, Adsorption calculations and modeling (Butter worth Heinemann, New York, 1994)

    Google Scholar 

  16. K.P. Singh, D. Mohan, G.S. Tandon, G.S.D. Gupta, Ind. Eng. Chem. Res. 41, 2480 (2002)

    Article  CAS  Google Scholar 

  17. A. Golovoy, J. Braslaw, Air Pollut. Control Assoc. 31, 861–865 (1981)

    Article  CAS  Google Scholar 

  18. D. Ramirez, P.D. Sullivan, M.J. Rood, K.J. Hay, J. Environ. Eng. 130, 231–241 (2004)

  19. K. Urano, S. Omori, E. Yamamoto, Environ. Sci. Technol. 16, 10–14 (1982)

    Article  CAS  Google Scholar 

  20. C. Long, Y. Li, W. Yu, A. Li, J. Hazard. Mater. 203–204, 251–256 (2012)

    Article  Google Scholar 

  21. J.H. Tsai, H.M. Chiang, G.Y. Huang, H.L. Chiang, J. Hazard. Mater. 154, 1183–1191 (2008)

    Article  CAS  Google Scholar 

  22. D.F. Cai, W.Q. Huang, D.L. Wang, L. Zhang, G. Yang, Environ. Sci. 34, 4694–4700 (2013)

    CAS  Google Scholar 

  23. C.C. Huang, T.L. Hwu, Y.S. Hsia, J. Chem. Eng. Jpn. 26, 21 (1993)

    Article  CAS  Google Scholar 

  24. S.D. Manjare, A.K. Ghoshal, Can. J. Chem. Eng. 83, 232 (2005)

    Article  CAS  Google Scholar 

  25. Sylvain Giraudet, Pascaline Pré, Pierre Le Cloirec, J. Environ. Eng. 2010, 103–112 (2010)

    Article  Google Scholar 

  26. H. Hung, T. Lin, J. Air Waste Manage. Assoc. 57, 497–506 (2007)

    Article  CAS  Google Scholar 

  27. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, New York, 1982)

    Google Scholar 

  28. P.A. Webb, C. Orr, Analytical Methods in Fine Particle Technology (Micromeritics Instrument Corp., Norcross, 1997)

  29. M.A. Chayid, M.J. Ahmed, J. Environ. Chem. Eng. (2015). doi:10.1016/j.jece.2015.05.021

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the infrastructure and instruments grants from the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the Alberta Advanced Education and Technology ministry. The authors also thank the Air Quality Characterization and Control Research Group at the University of Alberta.

Funding

This work was partially funded by the Natural Science Foundation of China (31300482); the Jiangsu province Science Foundation for Youths (BK20130975 and BK20130966), China; the Scientific Research Foundation for Advanced Talents of Nanjing Forestry University (GXL2014035); and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Runzhou Huang or Dingguo Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is a link to the electronic supplementary material.

Supplementary Fig. 1. Experimental setup for microwave activation (TIFF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, H., Huang, R., Hashisho, Z. et al. Adsorption of toluene and acetone vapors on microwave-prepared activated carbon from agricultural residues: isotherms, kinetics, and thermodynamics studies. Res Chem Intermed 42, 3359–3371 (2016). https://doi.org/10.1007/s11164-015-2217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2217-9

Keywords

Navigation