Skip to main content
Log in

Determination of critical micelle concentrations of ionic and nonionic surfactants based on relative viscosity measurements by capillary electrophoresis

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The critical micelle concentration (CMC) can be obtained by measuring the distinct physical properties of surfactant molecules in the monomeric and micellar states. In this study, two linear increments of relative viscosity with distinct slopes were obtained when increasing surfactant concentrations from dilute solution to above the CMC, which was then determined by the intersection of the two linear extrapolations. Using a capillary electrophoresis (CE) instrument and Poiseuille’s law, the viscosities of surfactants at a series of concentrations covering the monomeric and micellar regions could be obtained by measuring the hydrodynamic flow rates of the corresponding surfactant solutions. We applied this method to determine the CMC values of various types of surfactants including anionic, cationic, zwitterionic, and nonionic surfactants. The resulting CMC values were all in good agreement with those reported in literature. Using this method, the multiple-stage micellization process of a short-chain surfactant was revealed. We have also demonstrated that the CE-based viscometer was applicable to the study of CMC variation caused by organic or electrolyte additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T.F. Tadros, Applied Surfactants: Principles and Applications, 1st edn. (Wiley, Weinheim, 2005), pp. 1–16

    Book  Google Scholar 

  2. E. Calvo, R. Bravo, A. Amigo, J. Gracia-Fadrique, Fluid Phase Equilib. 282, 14 (2009)

    Article  CAS  Google Scholar 

  3. E. Fuguet, C. Rafols, M. Roses, E. Bosch, Anal. Chim. Acta 548, 95 (2005)

    Article  CAS  Google Scholar 

  4. U. Anand, C. Jash, S. Mukherjee, J. Colloid Interface Sci. 364, 400 (2011)

    Article  CAS  Google Scholar 

  5. R.E. Stark, P.D. Leff, S.G. Milheim, A. Kropf, J. Phys. Chem. 88, 6063 (1984)

    Article  CAS  Google Scholar 

  6. C.-E. Lin, J. Chromatogr. A 1037, 467 (2004)

    Article  CAS  Google Scholar 

  7. M.S. Bello, R. Rezzonico, P.G. Righetti, J. Chromatogr. A 659, 199 (1994)

    Article  CAS  Google Scholar 

  8. S. Priyanto, G.A. Mansoori, A. Suwono, Chem. Eng. Sci. 56, 6933 (2001)

    Article  CAS  Google Scholar 

  9. F.E. Stanley, A.M. Warner, E. Schneiderman, A.M. Stalcup, J. Chromatogr. A 1216, 8431 (2009)

    Article  CAS  Google Scholar 

  10. E. Cordova, J. Gao, G.M. Whitesides, Anal. Chem. 69, 1370 (1997)

    Article  CAS  Google Scholar 

  11. A. Imhof, A. van Blaaderen, G. Maret, J. Mellema, J.K.G. Dhont, J. Chem. Phys. 100, 2170 (1994)

    Article  CAS  Google Scholar 

  12. M.A. Lauffer, J. Am. Chem. Soc. 66, 1188 (1944)

    Article  CAS  Google Scholar 

  13. A. Evilevitch, V. Lobaskin, U. Olsson, P. Linse, P. Schurtenberger, Langmuir 17, 1043 (2001)

    Article  CAS  Google Scholar 

  14. H. Chen, Y. Ding, Y. He, C. Tan, Chem. Phys. Lett. 444, 333 (2007)

    Article  CAS  Google Scholar 

  15. M.L. Corrin, W.D. Harkins, J. Am. Chem. Soc. 69, 683 (1947)

    Article  CAS  Google Scholar 

  16. L. Xu, E. Yokoyama, M. Satoh, Langmuir 21, 7153 (2005)

    Article  CAS  Google Scholar 

  17. M.J. Schick, J. Phys. Chem. 68, 3585 (1964)

    Article  CAS  Google Scholar 

  18. M. Abu-Hamdiyyah, K.J. Kumari, Phys. Chem. 94, 6445 (1990)

    Article  CAS  Google Scholar 

  19. J.C. Jacquier, P.L. Desbene, J. Chromatogr. A 718, 167 (1995)

    Article  CAS  Google Scholar 

  20. G. Mangiapia, D. Berti, P. Baglioni, J. Teixeira, L. Paduano, J. Phys. Chem. B 108, 9772 (2004)

    Article  CAS  Google Scholar 

  21. L.V. Dearden, E.M. Woolley, J. Chem. Thermodyn. 28, 1283 (1996)

    Article  CAS  Google Scholar 

  22. B. Lindman, N. Kamenka, M.-C. Puyal, B. Brun, B. Jonsson, J. Phys. Chem. 88, 53 (1984)

    Article  CAS  Google Scholar 

  23. A. Gonzalez-Perez, J.M. Ruso, G. Prieto, F. Sarmiento, Colloid Polym. Sci. 282, 1133 (2004)

    Article  CAS  Google Scholar 

  24. M.F. Emerson, A. Holtzer, J. Phys. Chem. 69, 3718 (1965)

    Article  CAS  Google Scholar 

  25. R. Sabate, M. Gallardo, J. Estelrich, Electrophoresis 21, 481 (2000)

    Article  CAS  Google Scholar 

  26. A.K. Singh, M. Darshi, S. Kanvah, J. Phys. Chem. A 104, 464 (2000)

    Article  CAS  Google Scholar 

  27. A. Zdziennicka, K. Szymczyk, J. Krawczyk, B. Janczuk, Fluid Phase Equilib. 322–323, 126 (2012)

    Article  Google Scholar 

  28. A. Chattopadhyay, K.G. Harikumar, FEBS Lett. 391, 199 (1996)

    Article  CAS  Google Scholar 

  29. Q. Guan, S.D. Noblitt, C.S. Henry, Electrophoresis 33, 379 (2012)

    Article  CAS  Google Scholar 

  30. J.C. Gertsch, S.D. Noblitt, D.M. Cropek, C.S. Henry, Anal. Chem. 82, 3426 (2010)

    Article  CAS  Google Scholar 

  31. B. Rozycka-Roszak, P. Misiak, B. Jurczak, K.A. Wilk, J. Phys. Chem. B 112, 16546 (2008)

    Article  CAS  Google Scholar 

  32. A. Vishnyakov, M.-T. Lee, A.V. Neimark, J. Phys. Chem. Lett. 4, 797 (2013)

    Article  CAS  Google Scholar 

  33. C. Wu, T. Liu, B. Chu, Macromolecules 30, 4574 (1997)

    Article  CAS  Google Scholar 

  34. P. Alexandridus, J.F. Holzwarth, T.A. Hatton, Macromolecules 27, 2414 (1994)

    Article  Google Scholar 

  35. T. Zemb, M. Drifford, M. Hayoun, A. Jehanno, J. Phys. Chem. 87, 4524 (1983)

    Article  CAS  Google Scholar 

  36. E. Ruckenstein, R. Nagarajan, J. Phys. Chem. 85, 3010 (1981)

    Article  CAS  Google Scholar 

  37. M.A. Desando, L.W. Reeves, Can. J. Chem. 64, 1817 (1986)

    Article  CAS  Google Scholar 

  38. G.K. Batchelor, J.T. Green, J. Fluid Mech. 56, 401 (1972)

    Article  Google Scholar 

  39. P. Ekwall, P. Holmberg, Acta Chem. Scand. 19, 455 (1965)

    Article  CAS  Google Scholar 

  40. L. Moreira, A. Firoozabadi, Langmuir 26, 15177 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Council of Taiwan and Tamkang University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhung Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Li, N.J., Chen, K.C. et al. Determination of critical micelle concentrations of ionic and nonionic surfactants based on relative viscosity measurements by capillary electrophoresis. Res Chem Intermed 40, 2371–2379 (2014). https://doi.org/10.1007/s11164-014-1614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1614-9

Keywords

Navigation