Skip to main content

Advertisement

Log in

Toward a better understanding of freshwater fish responses to an increasingly drought-stricken world

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Drought is a constant and important consequence of natural climatic processes and most freshwater fishes have adaptations to counter its effects. However, a changing global climate coupled with increasing human demand for water is reducing the availability of fresh water to fishes and contributing to more frequent and intense drought around the globe. A clear understanding of how fishes, fish habitat, and fisheries are affected by extended drought is needed to help resolve conflicts over water. We therefore identify key questions and research themes to promote the conservation of freshwater fishes as drought increases in length, frequency and severity. (1) How does drought affect fish habitat? (2) What is drought tolerance in fishes? (3) What are drought refuges for fishes? (4) What kills fish during drought? (5) What is the nature of species succession in drought-stricken waters? (6) What are the long-term consequences of drought to fishes? (7) How does climate change affect drought-fish interactions? (8) How does drought influence fisheries? Our limited ability to provide answers to these questions indicates that fish diversity and abundance worldwide is threatened by drought. Planning, including collection of long-term data, is necessary so that conservation and water re-allocation strategies can be implemented in a timely manner to maintain habitats necessary to support biodiversity during drought periods. Without increased understanding of physiological and behavioural factors that determine the tolerance of fishes to drought, it will not be possible to establish realistic targets for management and restoration of populations and species confronting increasing drought frequency and severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams SB, Warren ML Jr (2005) Recolonization by warmwater fishes and crayfishes after severe drought in upper coastal plain hill streams. Trans Am Fish Soc 134(5):1173–1192

    Article  Google Scholar 

  • Ahn CH, Lee S, Song HM, Bang Park J, Joo JC (2016) Evaluation of the performance for an artificial deep pool (ADP) as an alternative fish shelter. Ecol Eng 93:37–45

    Article  Google Scholar 

  • Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol 47(4):761–776

    Article  Google Scholar 

  • Anderson KE, Paul AJ, McCauley E, Jackson LJ, Post JR, Nisbet RM (2006) Instream flow needs in streams and rivers: the importance of understanding ecological dynamics. Front Ecol Environ 4(6):309–318

    Article  Google Scholar 

  • Arantes CC, Castello L, Cetra M, Schilling A (2013) Environmental influences on the distribution of arapaima in Amazon floodplains. Environ Biol Fish 96(10–11):1257–1267

    Article  Google Scholar 

  • Arthington AH, Bunn SE, Poff NL, Naiman RJ (2006) The challenge of providing environmental flow rules to sustain river ecosystems. Ecol Appl 16(4):1311–1318

    Article  PubMed  Google Scholar 

  • Attrill MJ, Power M (2000) Effects on invertebrate populations of drought-induced changes in estuarine water quality. Mar Ecol Prog Ser 203:133–143

    Article  CAS  Google Scholar 

  • Attrill MJ, Rundle SD, Thomas RM (1996) The influence of drought-induced low freshwater flow on an upper-estuarine macroinvertebrate community. Water Res 30(2):261–268

    Article  CAS  Google Scholar 

  • Avery-Gomm S, Rosenfeld JS, Richardson JS, Pearson M (2014) Hydrological drought and the role of refugia in an endangered riffle-dwelling fish, Nooksack dace (Rhinichthys cataractae ssp.). Can J Fish Aquat Sci 71(11):1625–1634

    Article  Google Scholar 

  • Azevedo LS, Pestana IA, Rocha ARM, Meneguelli-Souza AC, Lima CAI, Almeida MG, Bastos WR, Souza CMM (2018) Drought promotes increases in total mercury and methylmercury concentrations in fish from the lower Paraíba do Sul river, southeastern Brazil. Chemosphere 202:483–490

    Article  CAS  PubMed  Google Scholar 

  • Baker TL, Jennings CA (2005) Striped bass survival in Lake Blackshear, Georgia during drought conditions: implications for restoration efforts in Gulf of Mexico drainages. Environ Biol Fish 72(1):73–84

    Article  Google Scholar 

  • Baron JS, Poff NL, Angermeier PL, Dahm CN, Gleick PH, Hairston NG Jr, Jackson RB, Johnston CA, Richter BD, Steinman AD (2002) Meeting ecological and societal needs for fresh water. Ecol Appl 12:1247–1260

    Article  Google Scholar 

  • Beatty SJ, Morgan DL, Lymbery AJ (2014) Implications of climate change for potamodromous fishes. Global Change Biol 20(6):1794–1807

    Article  Google Scholar 

  • Bêche LA, Connors PG, Resh VH, Merenlender AM (2009) Resilience of fishes and invertebrates to prolonged drought in two California streams. Ecography 32(5):778–788

    Article  Google Scholar 

  • Bernardo JM, Ilhéu M, Matono P, Costa AM (2003) Interannual variation of fish assemblage structure in a Mediterranean river: implications of streamflow on the dominance of native or exotic species. Riv Res Appl 19(5–6):521–532

    Article  Google Scholar 

  • Bickler PE, Buck LT (2007) Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol 69:145–170

    Article  CAS  PubMed  Google Scholar 

  • Bogan MT, Lytle DA (2011) Severe drought drives novel community trajectories in desert stream pools. Freshw Biol 56(10):2070–2081

    Article  Google Scholar 

  • Bond NR, Lake PS, Arthington AH (2008) The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600:3–16

    Article  Google Scholar 

  • Boulton AJ, Lake PS (1992) The ecology of two intermittent streams in Victoria, Australia. Freshw Biol 27(1):99–121

    Article  Google Scholar 

  • Branco P, Segurado P, Santos JM, Pinheiro P, Ferreira MT (2012) Does longitudinal connectivity loss affect the distribution of freshwater fish? Ecol Eng 48:70–78

    Article  Google Scholar 

  • Brookes JD, Aldridge KT, Bice CM, Deegan B, Ferguson GJ, Paton DC, Sheaves M, Ye Q, Zampatti BP (2015) Fish productivity in the lower lakes and Coorong, Australia, during severe drought. Trans R Soc South Aust 139(2):189–215

    Article  Google Scholar 

  • Bucater LB, Livore JP, Noell CJ, Ye Q (2013) Temporal variation of larval fish assemblages of the Murray Mouth in prolonged drought conditions. Mar Freshw Res 64(10):932–937

    Article  Google Scholar 

  • Canton SP, Cline LD, Short R, Ward JV (1984) The macroinvertebrates and fish of a Colorado stream during a period of fluctuating discharge. Frewshw Biol 14(3):311–316

    Article  Google Scholar 

  • Carvalho F, Power M, Forsberg BR, Castello L, Martins EG, Freitas CE (2018) Trophic Ecology of Arapaima sp. in a ria lake—river–floodplain transition zone of the Amazon. Ecol Freshw Fish 27(1):237–246

    Article  Google Scholar 

  • Castello L (2008) Lateral migration of Arapaima gigas in floodplains of the Amazon. Ecol Freshw Fish 17(1):38–46

    Article  Google Scholar 

  • Chapman JM, Marcogliese DJ, Suski CD, Cooke SJ (2015) Variation in parasite communities and health indices of juvenile Lepomis gibbosus across a gradient of watershed land-use and habitat quality. Ecol Indic 57:564–572

    Article  Google Scholar 

  • Chessman BC (2013) Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biol Conserv 160:40–49

    Article  Google Scholar 

  • Closs GE, Lake PS (1996) Drought, differential mortality and the coexistence of a native and an introduced fish species in a south east Australian intermittent stream. Environ Biol Fish 47(1):17–26

    Article  Google Scholar 

  • Conallin AJ, Hillyard KA, Walker KJ, Gillanders BM, Smith BB (2011) Offstream movements of fish during drought in a regulated lowland river. Riv Res Appl 27(10):1237–1252

    Article  Google Scholar 

  • Connell JH, Sousa WP (1983) On the evidence needed to judge ecological stability or persistence. Am Nat 121(6):789–824

    Article  Google Scholar 

  • Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81(1–2):93–134

    Article  Google Scholar 

  • Cooke SJ, Cowx IG (2004) The role of recreational fishing in global fish crises. Bioscience 54(9):857–859

    Article  Google Scholar 

  • Cooke SJ, Nguyen VM, Dettmers JM, Arlinghaus R, Quist MC, Tweddle D, Weyl O et al (2016) Sustainable inland fisheries—perspectives from the recreational, commercial and subsistence sectors from around the globe. In: Closs GP, Krkosek M, Olden JD (eds) Conservation of freshwater fishes). Cambridge University Press, Cambridge, pp 467–505

    Chapter  Google Scholar 

  • Cooke SJ, Twardek WM, Lennox RJ, Zolderdo AJ, Bower SD, Gutowsky LF et al (2018) The nexus of fun and nutrition: recreational fishing is also about food. Fish Fish 19:201–224

    Article  Google Scholar 

  • Costa MJ, Lennox RJ, Katopodis C, Cooke SJ (2017) Is there evidence for flow variability as an organism-level stressor in fluvial fish? J Ecohydraul 2(1):68–83

    Article  Google Scholar 

  • Cott PA, Sibley PK, Somers WM, Lilly MR, Gordon AM (2008) A review of water level fluctuations on aquatic biota with an emphasis on fishes in ice-covered lakes. J Am Water Resou Soc 44(2):343–359

    Article  Google Scholar 

  • Crook DA, Reich P, Bond NR, McMaster D, Koehn JD, Lake PS (2010) Using biological information to support proactive strategies for managing freshwater fish during drought. Mar Freshw Res 61(3):379–387

    Article  CAS  Google Scholar 

  • Crook DA, Lowe WH, Allendorf FW, Erős T, Finn DS, Gillanders BM, Hadwen WL, Harrod C, Hermoso V, Jennings S, Kilada RW, Nagelkerken I, Hansen MM, Page TJ, Riginos C, Fry B, Hughes JM, Kilada RW (2015) Human effects on ecological connectivity in aquatic ecosystems: integrating scientific approaches to support management and mitigation. Sci Total Environ 534:52–64

    Article  CAS  PubMed  Google Scholar 

  • Cucherousset J, Paillisson J-M, Carpentier A, Chapman LJ (2007) Fish emigration from temporary wetlands during drought: the role of physiological tolerance. Fund Appl Limnol 168:169–178

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3(1):52–58

    Article  Google Scholar 

  • Davey AJH, Kelly DJ, Biggs BJF (2006) Refuge-use strategies of stream fishes in response to extreme low flows. J Fish Biol 69:1047–1059

    Article  Google Scholar 

  • Davies RW (1978) Pollution problems arising from the 1975–1976 drought. Proc R Soc Lon A Math Phys Sci 36:97–107

    Article  Google Scholar 

  • Dempson JB, O'connell MF, Cochrane NM (2001) Potential impact of climate warming on recreational fishing opportunities for Atlantic salmon, Salmo salar L., in Newfoundland, Canada. Fish Manage Ecol 8(1):69–82

    Article  Google Scholar 

  • Dexter T, Bond N, Hale R, Reich P (2014) Dispersal and recruitment of fish in an intermittent stream network. Austral Ecol 39(2):225–235

    Article  Google Scholar 

  • Diffenbaugh NS, Swain DL, Touma D (2015) Anthropogenic warming has increased drought risk in California. Proc Nat Acad Sci 112(13):3931–3936

    Article  CAS  PubMed  Google Scholar 

  • Dolbeth M, Martinho F, Viegas I, Cabral H, Pardal MA (2008) Estuarine production of resident and nursery fish species: conditioning by drought events? Estuarine Coast Shelf Sci 78:51–60

    Article  Google Scholar 

  • Döll P, Zhang J (2010) Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol Earth Syst Sci 14(5):783–799

    Article  Google Scholar 

  • Dore MH (2005) Climate change and changes in global precipitation patterns: what do we know? Environ Int 31(8):1167–1181

    Article  PubMed  Google Scholar 

  • Dorn NJ (2008) Colonization and reproduction of large macroinvertebrates are enhanced by drought-related fish reductions. Hydrobiologia 605(1):209–218

    Article  Google Scholar 

  • Douglas MR, Brunner PC, Douglas ME (2003) Drought in an evolutionary context: molecular variability in flannelmouth sucker (Catosomus latipinnis) from the Colorado River Basin of western North America. Freshw Biol 48:1256–1275

    Google Scholar 

  • Driver LJ, Hoeinghaus DJ (2016) Fish metacommunity responses to experimental drought are determined by habitat heterogeneity and connectivity. Freshw Biol 61(4):533–548

    Article  Google Scholar 

  • Ebner BC, Morgan DL, Kerezsy A, Hardie S, Beatty SJ, Seymour JE et al (2016) Enhancing conservation of Australian freshwater ecosystems: identification of freshwater flagship fishes and relevant target audiences. Fish Fish 17(4):1134–1151

    Article  Google Scholar 

  • Elliott JM (2000) Pools as refugia for brown trout during two summer droughts: trout responses to thermal and oxygen stress. J Fish Biol 56(4):938–948

    Article  Google Scholar 

  • Elliott JM (2006) Periodic habitat loss alters the competitive coexistence between brown trout and bullheads in a small stream over 34 years. J Appl Ecol 75:54–63

    Article  CAS  Google Scholar 

  • Elliott JM, Hurley MA, Elliott JA (1997) Variable effects of droughts on the density of a sea-trout Salmo trutta population over 30 years. J Appl Ecol 34(5):1229–1238

    Article  Google Scholar 

  • Epstein PR, Defilippo C (2001) West Nile virus and drought. Global Change Hum Health 2(2):105–107

    Article  Google Scholar 

  • Fabré NN, Castello L, Isaac VJ, Batista VS (2017) Fishing and drought effects on fish assemblages of the central Amazon Basin. Fish Res 188:157–165

    Article  Google Scholar 

  • Falke JA, Fausch KD, Magelky R, Aldred A, Durnford Riley LK et al (2011) The role of groundwater pumping and drought in shaping ecological futures for stream fishes in a dryland river basin of the western Great Plains, USA. Ecohydrology 4(5):682–697

    Article  Google Scholar 

  • Falkenmark M, Rockström J (2004) Balancing water for humans and nature: the new approach in ecohydrology. Earthscan, London

    Google Scholar 

  • Fencl JS, Mather ME, Costigan KH, Daniels MD (2015) How big of an effect do small dams have? Using geomorphological footprints to quantify spatial impact of low-head dams and identify patterns of across-dam variation. PLoS ONE 10(11):e0141210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson GJ, Ward TM, Ye Q, Geddes MC, Gillanders BM (2010) Impacts of drought, flow regime and fishing on the fish assemblage in southern Australia’s largest temperate estuary. Fishery Stock Assessment Report for PIRSA Fisheries. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2010/000909-1. SARDI Research Report Series 498, pp 332

  • Ferguson GJ, Ward TM, Ye Q, Geddes MC, Gillanders BM (2013) Impacts of drought, flow regime, and fishing on the fish assemblage in southern Australia’s largest temperate estuary. Estuaries Coast 36(4):737–753

    Article  CAS  Google Scholar 

  • Fischer P, Öhl U (2005) Effects of water-level fluctuations on the littoral benthic fish community in lakes: a mesocosm experiment. Behav Ecol 16(4):741–746

    Article  Google Scholar 

  • Folke C, Hahn T, Olsson P, Norberg J (2005) Adaptive governance of social-ecological systems. Annu Rev Environ Resour 30:441–473

    Article  Google Scholar 

  • Freeman MC, Marcinek PA (2006) Fish assemblage responses to water withdrawals and water supply reservoirs in piedmont streams. Environ Manag 38(3):435–450

    Article  Google Scholar 

  • Freeman MC, Crawford MK, Barrett JC, Facey DE, Flood MG, Hill J et al (1988) Fish assemblage stability in a southern Appalachian stream. Can J Fish Aquat Sci 45(11):1949–1958

    Article  Google Scholar 

  • Freitas CE, Siqueira-Souza FK, Humston R, Hurd LE (2013) An initial assessment of drought sensitivity in Amazonian fish communities. Hydrobiologia 705(1):159–171

    Article  CAS  Google Scholar 

  • Gaeta JW, Sass GG, Carpenter SR (2014) Drought-driven lake level decline: effects on coarse woody habitat and fishes. Can J Fish Aquat Sci 71(2):315–325

    Article  CAS  Google Scholar 

  • Galacatos K, Barriga-Salazar R, Stewart DJ (2004) Seasonal and habitat influences on fish communities within the lower Yasuni River basin of the Ecuadorian Amazon. Environ Biol Fish 71(1):33–51

    Article  Google Scholar 

  • Garcia C, Schumann DA, Howell J, Graeb BD, Bertrand KN, Klumb RA (2018) Seasonality, floods and droughts structure larval fish assemblages in prairie rivers. Ecol Freshw Fish 27(1):389–397

    Article  Google Scholar 

  • Gido KB, Jackson DA (2010) Community ecology of stream fishes: concepts, approaches, and techniques. Am Fish Soc Symp 73:651–664

    Google Scholar 

  • Gido KB, Dodds WK, Eberle ME (2010) Retrospective analysis of fish community change during a half-century of landuse and streamflow changes. J N Am Benthol Soc 29(3):970–987

    Article  Google Scholar 

  • Gillson J, Scandol J, Suthers I (2009) Estuarine gillnet fishery catch rates decline during drought in eastern Australia. Fish Res 99(1):26–37

    Article  Google Scholar 

  • González-Ortegón E, Baldó F, Arias A, Cuesta JA, Fernández-Delgado C, Vilas C, Drake P (2015) Freshwater scarcity effects on the aquatic macrofauna of a European Mediterranean-climate estuary. Sci Total Environ 503:213–221

    Article  CAS  PubMed  Google Scholar 

  • Gowan C, Young MK, Fausch KD, Riley SC (1994) Restricted movement in resident stream salmonids: a paradigm lost? Can J Fish Aquat Sci 51(11):2626–2637

    Article  Google Scholar 

  • Gregory JM, Mitchell JFB, Brady AJ (1997) Summer drought in northern midlatitudes in a time-dependent CO2 climate experiment. J Clim 10(4):662–686

    Article  Google Scholar 

  • Grossman GD, Dowd JF, Crawford M (1990) Assemblage stability in stream fishes: a review. Environ Manage 14(5):661–671

    Article  Google Scholar 

  • Grossman GD, Ratajczak RE, Crawford M, Freeman MC (1998) Assemblage organization in stream fishes: effects of environmental variation and interspecific interactions. Ecol Monogr 68(3):395–420

    Article  Google Scholar 

  • Grossman GD, Ratajczak RE Jr, Farr MD, Wagner CM, Petty JT (2010) Why there are fewer fish upstream. In Community ecology of stream fishes: concepts, approaches, and techniques. Am Fish Soc Sym 73:63–81

    Google Scholar 

  • Guégan JF, Lek S, Oberdorff T (1998) Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391(6665):382–384

    Article  Google Scholar 

  • Guerreiro SB, Dawson RJ, Kilsby C, Lewis E, Ford A (2018) Future heat-waves, droughts and floods in 571 European cities. Environ Res Lett 13(3):034009

    Article  Google Scholar 

  • Hakala JP, Hartman KJ (2004) Drought effect on stream morphology and brook trout (Salvelinus fontinalis) populations in forested headwater streams. Hydrobiologia 515(1–3):203–213

    Article  Google Scholar 

  • Halliday IA, Robins JB, Mayer DG, Staunton-Smith J, Sellin MJ (2008) Effects of freshwater flow on the year-class strength of a non-diadromous estuarine finfish, king threadfin (Polydactylus macrochir), in a dry-tropical estuary. Mar Freshw Res 59(2):157–164

    Article  Google Scholar 

  • Halliday IA, Robins JB, Mayer DG, Staunton-Smith J, Sellin MJ (2010) Freshwater flows affect the year-class strength of barramundi Lates calcarife in the Fitzroy River estuary, Central Queensland. Proc R Soc Qld 116:1

    Google Scholar 

  • Halttunen E, Gjelland KØ, Hamel S, Serra-Llinares RM, Nilsen R, Arechavala-Lopez P, Skarðhamar J, Johnsen IA, Asplin L, Karlson Ø, Bjørn P-A, Finstad B (2018) Sea trout adapt their migratory behaviour in response to high salmon lice concentrations. J Fish Dis 41(6):953–967

    Article  CAS  PubMed  Google Scholar 

  • Hammer MP, Bice CM, Hall A, Frears A, Watt A, Whiterod NS et al (2013) Freshwater fish conservation in the face of critical water shortages in the southern Murray-Darling Basin, Australia. Mar Freshw Res 64(9):807–821

    Article  Google Scholar 

  • Harden Jones FR (1968) Fish migration. E. Arnold Ltd., London

    Google Scholar 

  • Harvey BC, Nakamoto RJ, White JL (2006) Reduced streamflow lowers dry-season growth of rainbow trout in a small stream. Trans Am Fish Soc 135(4):998–1005

    Article  Google Scholar 

  • Hayashi M, Rosenberry DO (2002) Effects of ground water exchange on the hydrology and ecology of surface water. Groundwater 40(3):309–316

    Article  CAS  Google Scholar 

  • Helfman G, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution, and ecology. Wiley, New York

    Google Scholar 

  • Holmlund CM, Hammer M (1999) Ecosystem services generated by fish populations. Ecol Econ 29(2):253–268

    Article  Google Scholar 

  • Humphries P, Baldwin DS (2003) Drought and aquatic ecosystems: an introduction. Freshw Biol 48(7):1141–1146

    Article  Google Scholar 

  • Humphries P, Winemiller KO (2009) Historical impacts on river fauna, shifting baselines, and challenges for restoration. Bioscience 59(8):673–684

    Article  Google Scholar 

  • Humphries P, Brown P, Douglas J, Pickworth A, Strongman R, Hall K et al (2008) Flow-related patterns in abundance and composition of the fish fauna of a degraded Australian lowland river. Freshw Biol 53(4):789–813

    Article  CAS  Google Scholar 

  • Hurd LE, Sousa RG, Siqueira-Souza FK, Cooper GJ, Kahn JR, Freitas CE (2016) Amazon floodplain fish communities: habitat connectivity and conservation in a rapidly deteriorating environment. Biol Conserv 195:118–127

    Article  Google Scholar 

  • Ingram BL, Malamud-Roam F (2013) The west without water—what past floods, droughts, and other climatic clues tell us about tomorrow. University of California Press, Berkeley, p 256

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  • Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities the roles of biotic, abiotic, and spatial factors. Can J Fish Aquat Sci 58(1):157–170

    Google Scholar 

  • James MC (1934) Effect of 1934 drought on fish life. Trans Am Fish Soc 64:57–62

    Article  Google Scholar 

  • Jarić I, Lennox RJ, Kalinkat G, Cvijanovic G, Radinger J (in press) Susceptibility of European freshwater fish to climate change: species profiling based on life-history and environmental characteristics. Global Change Biol 00:00-00

  • Jeffrey JD, Hasler CT, Chapman JM, Cooke SJ, Suski CD (2015) Linking landscape-scale disturbances to stress and condition of fish: implications for restoration and conservation. Integr Comp Biol 55(4):618–630

    Article  PubMed  Google Scholar 

  • Jennings S (2005) Indicators to support an ecosystem approach to fisheries. Fish Fish 6(3):212–232

    Article  Google Scholar 

  • Johnson WC, Millett BV, Gilmanov T, Voldseth RA, Guntenspergen GR, Naugle DE (2005) Vulnerability of northern prairie wetlands to climate change. Bioscience 55(10):863–872

    Article  Google Scholar 

  • Jowett IG, Richardson J, Bonnett ML (2005) Relationship between flow regime and fish abundances in a gravel-bed river, New Zealand. J Fish Biol 66(5):1419–1436

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106(1):110–127

    Google Scholar 

  • Kalinin AL, Rantin FT, Glass ML (1993) Dependence on body size of respiratory function in Hoplias malabaricus (Teleostei, Erythrinidae) during graded hypoxia. Fish Physiol Biochem 12(1):47–51

    Article  CAS  PubMed  Google Scholar 

  • Kanno Y, Vokoun JC (2010) Evaluating effects of water withdrawals and impoundments on fish assemblages in southern New England streams, USA. Fish Manag Ecol 17(3):272–283

    Article  Google Scholar 

  • Kelley CP, Mohtadi S, Cane MA, Seager R, Kushnir Y (2015) Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc Nat Acad Sci 112(11):3241–3246

    Article  CAS  PubMed  Google Scholar 

  • Kelsch SW (1994) Lotic fish-community structure following transition from severe drought to high discharge. J Freshw Ecol 9:331–341

    Article  Google Scholar 

  • Kiernan JD, Moyle PB (2012) Flows, droughts, and aliens: factors affecting the fish assemblage in a Sierra Nevada, California, stream. Ecol Appl 22:1146–1161

    Article  PubMed  Google Scholar 

  • Kim BM, Son SW, Min SK, Jeong JH, Kim SJ, Zhang X et al (2014) Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat Commun 5:5646

    Article  CAS  Google Scholar 

  • King AJ, Tankin Z, Lieshcke J (2012) Short-term effects of a prolonged blackwater event on aquatic fauna in the Murray River, Australia: considerations for future events. Mar Freshw Res 63(7):576–586

    Article  Google Scholar 

  • Klemetsen A, Amundsen PA, Dempson JB, Jonsson B, Jonsson N, O’Connell MF et al (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshw Fish 12(1):1–59

    Article  Google Scholar 

  • Knowles N, Dettinger MD, Cayan DR (2006) Trends in snowfall versus rainfall in the western United States. J Clim 19:4545–4559

    Article  Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Doll P, Jimenez B, Miller K et al (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53:3–10

    Article  Google Scholar 

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48(7):1161–1172

    Article  Google Scholar 

  • Lake PS (2011) Drought and aquatic ecosystems: effects and responses. Wiley, New York

    Book  Google Scholar 

  • Lake PS, Bond NR (2007) Australian futures: freshwater ecosystems and human water usage. Futures 39:288–305

    Article  Google Scholar 

  • Langerwisch F, Rost S, Gerten D, Poulter B, Rammig A, Cramer W (2013) Potential effects of climate change on inundation patterns in the Amazon Basin. Hydrol Earth Syst Sci 17(6):2247–2262

    Article  Google Scholar 

  • Larimore RW, Childers WF, Heckrotte C (1959) Destruction and re-establishment of stream fish and invertebrates affected by drought. Trans Am Fish Soc 88(4):261–285

    Article  Google Scholar 

  • LeCompte EL (1930) Effect of drought on wildlife. Trans Am Fish Soc 60:251–252

    Article  Google Scholar 

  • Lefevre S, McKenzie DJ, Nilsson GE (2017) Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms. Global Change Biol 23:3449–3459

    Article  Google Scholar 

  • Lennox RJ, Brownscombe JW, Cooke SJ, Danylchuk AJ (2018a) Post-release behaviour and survival of recreationally-angled arapaima (Arapaima cf. arapaima) assessed with accelerometer biologgers. Fish Res 00:00–00

    Google Scholar 

  • Lennox RJ, Suski CD, Cooke SJ (2018b) A macrophysiology approach to watershed science and management. Sci Tot Environ 626:434–440

    Article  CAS  Google Scholar 

  • Light T, Moyle PB (2015) Assembly rules and novel assemblages in aquatic ecosystems. In: Canning-Clode J (ed) Biological invasions in changing ecosystems: vectors, ecological impacts, management, and predictions. De Gruyter Open, Warsaw/Berlin, pp 432–457

    Google Scholar 

  • Limburg KE, Landergren P, Westin L, Elfman M, Kristiansson P (2001) Flexible modes of anadromy in Baltic sea trout: making the most of marginal spawning streams. J Fish Biol 59(3):682–695

    Article  Google Scholar 

  • Love JW, Taylor CM, Warren MP Jr (2008) Effects of summer drought on fish and macroinvertebrate assemblage properties in upland Ouachita Mountain streams, USA. Am Midl Nat 160(2):265–277

    Article  Google Scholar 

  • Lucas MC, Baras E (2001) Migration of freshwater fishes. Blackwell Science, Oxford

    Book  Google Scholar 

  • Lusardi RA, BOgan MT, Moyle PB, Dahlgren RA (2016) Environment shapes invertebrate assemblage structure differences between volcanic spring-fed and runoff rivers in northern California. Freshw Sci 35(3):1010–1022

    Article  Google Scholar 

  • Lynch AJ, Cooke SJ, Deines AM, Bower SD, Bunnell DB, Cowx IG, Nguyen VM et al (2016) The social, economic, and environmental importance of inland fish and fisheries. Environ Rev 24(2):115–121

    Article  Google Scholar 

  • Magalhaes MF, Beja P, Schlosser LJ, Collares-Pereira MJ (2007) Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshw Biol 52(8):1494–1510

    Article  Google Scholar 

  • Magoulick DD, Kozba RM (2003) The role of refugia for fishes during drought: a review and synthesis. Freshw Biol 48:1186–1198

    Article  Google Scholar 

  • Magurran AE, Henderson PA (2010) Temporal turnover and the maintenance of diversity in ecological assemblages. Philos Trans R Soc Lond B Biol Sci 365:3611–3620

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcogliese DJ (2001) Implications of climate change for parasitism of animals in the aquatic environment. Can J Zool 79(8):1331–1352

    Article  Google Scholar 

  • Marshall JC, Menke N, Crook DA, Lobegeiger JS, Balcombe SR, Huey JA et al (2016) Go with the flow: the movement behaviour of fish from isolated waterhole refugia during connecting flow events in an intermittent dryland river. Freshw Biol 61:1242–1258

    Article  Google Scholar 

  • Marsh-Matthews E, Matthews WJ (2010) Proximate and residual effects of exposure to simulated drought on prairie stream fishes. In: Gido KB, Jackson DA (eds) Community ecology of stream fishes. American fisheries society symposium, vol 73. American Fisheries Society, Bethesda, pp 461–486

    Google Scholar 

  • Matthews WJ, Marsh-Matthews E (2003) Effects of drought on fish across axes of space, time and ecological complexity. Freshw Biol 48(7):1232–1253

    Article  Google Scholar 

  • Matthews WJ, Marsh-Matthews E, Cashner RC, Gelwick F (2013) Disturbance and trajectory of change in a stream fish community over four decades. Oecologia 173(3):955–969

    Article  PubMed  Google Scholar 

  • McCargo JW (2004) Influence of drought on seasonal fish assemblages and habitat in the Lower Flint River basin, Georgia (Doctoral dissertation, MS Thesis, University of Georgia, Athens)

  • McCargo JW, Peterson JT (2010) An evaluation of the influence of seasonal base flow and geomorphic stream characteristics on Coastal Plain stream fish assemblages. Trans Am Fish Soc 139(1):29–48

    Article  Google Scholar 

  • McGowan S, Leavitt PR, Hall RI (2005) A whole-lake experiment to determine the effects of winter droughts on shallow lakes. Ecosystems 8(6):694–708

    Article  CAS  Google Scholar 

  • McMahon TA, Finlayson BL (2003) Droughts and anti-droughts: the low-flow hydrology of Australian rivers. Freshw Biol 48:1147–1160

    Article  Google Scholar 

  • Medeiros ES, Maltchik L (1999) The effects of hydrological disturbance on the intensity of infestation of Lernaea cyprinacea in an intermittent stream fish community. J Arid Environ 43(3):351–356

    Article  Google Scholar 

  • Miller MJ (2016) Life histories of catadromous fishes. In: Morais P, Daverat F (eds) An introduction to fish migration. CRC Press, Boca Raton

    Google Scholar 

  • Mims MC, Olden JD (2012) Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93(1):35–45

    Article  PubMed  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216

    Article  Google Scholar 

  • Mishra AK, Singh VP (2011) Drought modeling–A review. J Hydrol 403(1–2):157–175

    Article  Google Scholar 

  • Mitro MG (2016) Brook trout, brown trout, and ectoparasitic copepods Salmincola edwardsii: species interactions as a proximate cause of brook trout loss under changing environmental conditions. Trans Am Fish Soc 145(6):1223–1233

    Article  Google Scholar 

  • Mol JH, Resida D, Ramlal JS, Becker CR (2000) Effects of El Nino-related drought on freshwater and brackish-water fishes in Suriname, South America. Environ Biol Fish 59(4):429–440

    Article  Google Scholar 

  • Morrongiello JR, Beatty SJ, Bennet JC, Crook DA, Ikedife DN, Kennard MJ et al (2011) Climate change and its implications for Australia’s freshwater fish. Mar Freshw Res 62(9):1082–1098

    Article  Google Scholar 

  • Mount J, Gray B et al (2018) Managing drought in a changing climate: Four essential reforms. Public Policy Institute of California, San Francisco. 30 pp. http://www.ppic.org/publication/managing-drought-in-a-changing-climate-four-essential-reforms

  • Mount J, Gray B, Chappelle C, Gartrell G, Grantham T, Moyle P et al (2017) Managing California’s freshwater ecosystems: lessons from the 2012–16 drought. Public Policy Institute of California 52 pp. http://www.ppic.org/publication/managing-californias-freshwater-ecosystems-lessons-from-the-2012-16-drought

  • Moyle PB (2002) Inland fishes of California. University of California Press, Berkeley

    Google Scholar 

  • Moyle PB, Vondracek B, Grossman GD (1983) Responses of fish populations in the North Fork of the Feather River, California, to treatments with fish toxicants. North Am J Fish Manag 3(1):48–60

    Article  Google Scholar 

  • Moyle PB, Baxter RD, Sommer T, Foin TC, Matern SA (2004) Biology and population dynamics of Sacramento splittail (Pogonichthys macrolepidotus) in the San Francisco Estuary: a review. San Francisco Estuary and Watershed Science [online serial] 2(2):1–47. http://repositories.cdlib.org/jmie/sfews/

  • Moyle PB, Crain PK, Whitener K (2007) Patterns in the use of a restored California floodplain by native and alien fishes. San Franc Estuary Watershed Sci 5(3):1–27

    Google Scholar 

  • Moyle PB, Kiernan JD, Crain PK, Quiñones RM (2013) Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach. PLoS ONE 8(5):e63883

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyle P, Lusardi R, Samuel P, Katz J (2017) State of the salmonids: Status of California’s emblematic fishes 2017. Center for Watershed Sciences, University of California, Davis and California Trout, San Francisco, CA. 579 pp. https://watershed.ucdavis.edu/files/content/news/SOS%20II_Final.pdf

  • Nagrodski A, Raby GD, Hasler CT, Taylor MK, Cooke SJ (2012) Fish stranding in freshwater systems: sources, consequences, and mitigation. J Environ Manag 103:133–141

    Article  Google Scholar 

  • Nguyen VM, Lynch AJ, Young N, Cowx IG, Beard TD Jr, Taylor WW, Cooke SJ (2016) To manage inland fisheries is to manage at the social-ecological watershed scale. J Environ Manag 181:312–325

    Article  Google Scholar 

  • O’Connor JE, Duda JJ, Grant GE (2015) 1000 dams down and counting. Science 348(6234):496–497

    Article  PubMed  Google Scholar 

  • Ogston G, Beatty SJ, Morgan DL, Pusey BJ, Lymbery AJ (2016) Living on burrowed time: aestivating fishes in south-western Australia face extinction due to climate change. Biol Conserv 195:235–244

    Article  Google Scholar 

  • Olden JD, Kennard MJ (2010) Intercontinental comparison of fish life history strategies along a gradient of hydrologic variability. Am Fish Soc Symp 73:83–107

    Google Scholar 

  • Opperman JJ, Moyle PB, Larsen EW, Florsheim JL, Manfree AD (2017) Floodplains: processes, ecosystems, and services in temperate regions. University of California Press, Berkeley

    Google Scholar 

  • Ormerod SJ (2009) Climate change, river conservation and the adaptation challenge. Aquat Conserv 19(6):609–613

    Article  Google Scholar 

  • Paller MH (1997) Recovery of a reservoir fish community from drawdown related impacts. N Am J Fish Manag 17(3):726–733

    Article  Google Scholar 

  • Parker RH (1955) Changes in the invertebrate fauna, apparently attributable to salinity changes, in the bays of central Texas. J Paleontol 193–211:2100–2166

    Google Scholar 

  • Parry ES, Gregory SD, Laurisden RB, Griffiths SW (2018) The effects of flow on Atlantic salmon (Salmo salar) redd distribution in a UK chalk stream between 1980 and 2015. Ecol Freshw Fish 27(1):128–137

    Article  Google Scholar 

  • Perkin JS, Gido KB, Costigan KH, Daniels MD, Johnson ER (2015) Fragmentation and drying ratchet down Great Plains stream fish diversity. Aquat Conserv 25(5):639–655

    Article  Google Scholar 

  • Perry GL, Bond NR (2009) Spatially explicit modeling of habitat dynamics and fish population persistence in an intermittent lowland stream. Ecol Appl 19(3):731–746

    Article  PubMed  Google Scholar 

  • Peterson JT, Bayley PB (1993) Colonization rates of fishes in experimentally defaunated warmwater streams. Trans Am Fish Soc 122(2):199–207

    Article  Google Scholar 

  • Pickering AD, Pottinger TG (1989) Stress responses and disease resistance in salmonid fish: effects of chronic elevation of plasma cortisol. Fish Physiol Biochem 7(1–6):253–258

    Article  CAS  Google Scholar 

  • Pinaya WHD, Lobon-Cervia FJ, Pita P, de Souza RB, Freire J, Isaac FV (2016) Multispecies fisheries in the lower Amazon River and its relationship with the regional and global climate variability. PLoS ONE 11:e0157050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poff NL, Allan JD (1995) Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76(2):606–627

    Article  Google Scholar 

  • Poff NL, Allan JD, Palmer MA, Hart DD, Richter BD, Arthington AH, Rogers KH et al (2003) River flows and water wars: emerging science for environmental decision making. Front Ecol Environ 1(6):298–306

    Article  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Ann Rev Ecol Sys 28:289–316

    Article  Google Scholar 

  • Porter TR (1997) Protocols used in Newfoundland for determining if a river will be closed for salmon angling. In: Chaput GJ (ed) Proceedings of a workshop to review conservation principles for Atlantic Salmon in Eastern Canada. Department of Fisheries and Oceans, Canadian Stock Assessment Proceedings Series, vol 97, pp 21–23

  • Postel S (1996) Dividing the waters: food security, ecosystem health, and the new politics of scarcity. Worldwatch Institute, Washington, DC

    Google Scholar 

  • Poulakis GR, Stevens PW, Timmers AA, Wiley TR, Simpfendorfer CA (2011) Abiotic affinities and spatiotemporal distribution of the endangered smalltooth sawfish, Pristis pectinata, in a south-western Florida nursery. Mar Freshw Res 62(10):1165–1177

    Article  Google Scholar 

  • Power G, Brown RS, Imhof JG (1999) Groundwater and fish—insights from northern North America. Hydrol Proc 13(3):401–422

    Article  Google Scholar 

  • Power ME, Parker MS, Dietrich WE (2008) Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. Ecol Monogr 78(2):263–282

    Article  Google Scholar 

  • Prowse TD, Beltaos S (2002) Climatic control of river-ice hydrology: a review. Hydrol Process 16(4):805–822

    Article  Google Scholar 

  • Pusey BJ (1989) Aestivation in the teleost fish Lepidogalaxias salamandroides (Mees). Comp Biochem Physiol A Physiol 92(1):137–138

    Article  Google Scholar 

  • Radinger J, Hölker F, Horký P, Slavík O, Wolter C (2018) Improved river continuity facilitates fishes’ abilities to track future environmental changes. J Environ Manag 208:169–179

    Article  Google Scholar 

  • Ramirez A, Gutiérrez-Fonseca PE, Kelly SP, Engman AC, Wagner K, Rosas KG, Rodríguez N (2018) Drought facilitates species invasions in urban streams: results from a long-term study of tropical island fish assemblage structure. Front Ecol Evol 6:115

    Article  Google Scholar 

  • Richter BD, Warner AT, Meyer JL, Lutz K (2006) A collaborative and adaptive process for developing environmental flow recommendations. Riv Res Appl 22(3):297–318

    Article  Google Scholar 

  • Robins J, Mayer D, Staunton-Smith J, Halliday I, Sawynok B, Sellin M (2006) Variable growth rates of the tropical estuarine fish barramundi Lates calcarifer (Bloch) under different freshwater flow conditions. J Fish Biol 69(2):379–391

    Article  Google Scholar 

  • Rogers SL, Greenway B (2005) A UK perspective on the development of marine ecosystem indicators. Mar Poll Bull 50(1):9–19

    Article  CAS  Google Scholar 

  • Röpke CP, Amadio S, Zuanon J, Ferreira EJ, De Dues CP, Pires TH, Winemiller KO (2017) Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon. Sci Rep 7:40170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross ST (2013) Ecology of North American Fishes. University of California Press, Berkeley

    Google Scholar 

  • Ross T, Lott N (2003) A climatology of 1980–2003 extreme weather and climate events. US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite Data and Information Service, National Climatic Data Center, pp 1–15

  • Ross ST, Matthews WJ, Echelle AA (1985) Persistence of stream fish assemblages: effects of environmental change. Am Midl Nat 126(1):24–40

    Article  Google Scholar 

  • Sammons SM, Maceina MJ (2009) Effects of river flows on growth of redbreast sunfish Lepomis auritus (Centrarchidae) in Georgia rivers. J Fish Biol 74(7):1580–1593

    Article  CAS  PubMed  Google Scholar 

  • Schindler DW, Curtis PJ, Parker BR, Stainton MP (1996) Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379(6567):705–708

    Article  CAS  Google Scholar 

  • Schindler DE, Hilborn R, Chasco B, Boatright CB, Quinn TP, Rogers LA, Webster MS (2010) Population diversity and the portfolio effect in an exploited species. Nature 465:609–612

    Article  CAS  PubMed  Google Scholar 

  • Scrimgeour GJ, Prowse TD, Culp JM, Chambers PA (1994) Ecological effects of river ice break-up: a review and perspective. Freshw Biol 32(2):261–275

    Article  Google Scholar 

  • Seastedt TR, Hobbs RJ, Suding KN (2008) Management of novel ecosystems: are novel approaches required? Front Ecol Environ 6(10):547–553

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31(1):79–105

    Article  Google Scholar 

  • Smale MA, Rabeni CF (1995) Influences of hypoxia and hyperthermia on fish species composition in headwater streams. Trans Am Fish Soc 124:711–725

    Article  Google Scholar 

  • Smith JJ (1982) Fishes of the Pajaro River Basin. In: Moyle PB (ed) Distribution and ecology of stream fishes other Sacramento-San Joaquin Drainage system California. University of California Publications in Zoology, vol 115, pp 3–171

  • Smith LC, Turcotte DL, Isacks BL (1998) Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol Process 12(2):233–249

    Article  Google Scholar 

  • Sotiropoulos JC, Nislow KH, Ross MR (2006) Brook trout, Salvelinus fontinalis, microhabitat selection and diet under low summer stream flows. Fish Manag Ecol 13(3):149–155

    Article  Google Scholar 

  • Stanley CE, Tayloer JM, King RS (2012) Coupling fish community structure with instream flow and habitat connectivity between two hydrologically extreme years. Trans Am Fish Soc 141(4):1000–1015

    Article  Google Scholar 

  • Staunton-Smith J, Robins JB, Mayer DG, Sellin MJ, Halliday IA (2004) Does the quantity and timing of fresh water flowing into a dry tropical estuary affect year-class strength of barramundi (Lates calcarifer)? Mar Freshw Res 55(8):787–797

    Article  Google Scholar 

  • Steichen JL, Quigg A (2018) Fish species as indicators of freshwater inflow within a subtropical estuary in the Gulf of Mexico. Ecol Indic 85:180–189

    Article  CAS  Google Scholar 

  • Sullivan KM (1986) Physiology of feeding and starvation in overwintering freshwater fishes. In: Noaks DLG (ed) Developments in the environmental biology of fishes. Springer, New York, pp 259–268

    Google Scholar 

  • Swales S, Storey AW, Roderick ID, Figa BS (1999) Fishes of floodplain habitats of the Fly River system, Papua New Guinea, and changes associated with El Nino droughts and algal blooms. Environ Biol Fish 54(4):389–404

    Article  Google Scholar 

  • Thorp JH, Delong MD (1994) The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70(2):305–308

    Article  Google Scholar 

  • Tramer E (1977) Catastrophic mortality of stream fishes trapped in shrinking pools. Am Midl Nat 97:469–478

    Article  Google Scholar 

  • Trenberth KE, Dai A, van der Sshrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Change 4(1):17–22

    Article  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37(1):130–137

    Article  Google Scholar 

  • Vivier L, Cyrus DP, Jerling HL (2010) Fish community structure of the St Lucia estuarine system under prolonged drought conditions and its potential for recovery after mouth breaching. Estuar Coast Shelf Sci 86(4):568–579

    Article  Google Scholar 

  • Vogrinc PN, Durso AM, Winne CT, Willson JD (2018) Landscape-scale effects of supra-seasonal drought on semi-aquatic snake assemblages. Wetlands 38:1–10

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P et al (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561

    Article  CAS  Google Scholar 

  • Walters AW, Post DM (2008) An experimental disturbance alters fish size structure but not food chain length in streams. Ecology 89(12):3261–3267

    Article  PubMed  Google Scholar 

  • Ward TD, Algera DA, Gallagher AJ, Hawkins E, Horodysky A, Jørgensen C et al (2016) Understanding the individual to implement the ecosystem approach to fisheries management. Conserv Physiol 4(1):cow005

    Article  PubMed  PubMed Central  Google Scholar 

  • Wedderburn SD, Hammer MP, Bice CM (2012) Shifts in small-bodied fish assemblages resulting from drought-induced water level recession in terminating lakes of the Murray-Darling Basin, Australia. Hydrobiologia 691(1):35–46

    Article  CAS  Google Scholar 

  • Wedderburn SD, Barnes TC, Hillyard KA (2014) Shifts in fish assemblages indicate failed recovery of threatened species following prolonged drought in terminating lakes of the Murray-Darling Basin, Australia. Hydrobiologia 730(1):179–190

    Article  CAS  Google Scholar 

  • Wedderburn SD, Bice CM, Barnes TC (2015) Prey selection and diet overlap of native golden perch and alien redfin perch under contrasting hydrological conditions. Aust J Zool 62(5):374–381

    Article  Google Scholar 

  • Wedemeyer GA (1976) Physiological response of juvenile coho salmon (Oncorhynchus kisutch) and rainbow trout (Salmo gairdneri) to handling and crowding stress in intensive fish culture. J Fish Res Board Can 33(12):2699–2702

    Article  Google Scholar 

  • Welcomme RL, Cowx IG, Coates B, Béné C, Funge-Smith S, Halls A et al (2010) Inland capture fisheries. Philos Trans R Soc Lond B Biol Sci 365(1554):2881–2896

    Article  PubMed  PubMed Central  Google Scholar 

  • White SM, Rahel FJ (2008) Complementation of habitats for Bonneville cutthroat trout in watersheds influenced by beavers, livestock, and drought. Trans Am Fish Soc 137(3):881–894

    Article  Google Scholar 

  • White RS, McHugh PA, McIntosh AR (2016) Drought-survival is a threshold function of habitat size and population density in a fish metapopulation. Global Change Biol 22:3341–3348

    Article  Google Scholar 

  • Whiterod NS, Hammer MP, Vilizzi L (2015) Spatial and temporal variability in fish community structure in Mediterranean climate temporary streams. Fundam Appl Limnol 187(2):135–150

    Article  Google Scholar 

  • Whitfield AK (1990) Life-history styles of fishes in South African estuaries. Environ Biol Fish 28(1–4):295–308

    Article  Google Scholar 

  • Whitney JE, Al-Chokhachy R, Bunnell DB, Caldwell CA, Cooke SJ, Eliason EJ, Rogers R, Lynch AJ, Paukert CP (2016a) Physiological basis of climate change impacts on North American inland fishes. Fisheries 41(7):332–345

    Article  Google Scholar 

  • Whitney JE, Gido KB, Martin EC, Hase KJ (2016b) The first to arrive and the last to leave: colonisation and extinction dynamics of common and rare fishes in intermittent prairie streams. Freshw Biol 61(8):1321–1334

    Article  Google Scholar 

  • Wilhite DA, Svoboda MD (2000) Drought early warning systems in the context of drought preparedness and mitigation. In: Early warning systems for drought preparedness and drought management. World Meteorological Organization, Lisboa, pp 1–21

  • Xenopoulos MA, Lodge DM (2006) Going with the flow: using species-discharge relationships to forecast losses in fish biodiversity. Ecology 87(8):1907–1914

    Article  PubMed  Google Scholar 

  • Xenopoulos MA, Lodge DM, Alcamo J, Märker M, Schulze K, van Vurren DP (2005) Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biol 11(10):1557–1564

    Article  Google Scholar 

  • Zampatti BP, Bice CM, Jennings PR (2010) Temporal variability in fish assemblage structure and recruitment in a freshwater-deprived estuary: the Coorong, Australia. Mar Freshw Res 61(11):1298–1312

    Article  CAS  Google Scholar 

  • Zaret TM, Rand AS (1971) Competition in tropical stream fishes: support for the competitive exclusion principle. Ecology 52(2):336–342

    Article  Google Scholar 

Download references

Acknowledgements

Lennox and Cooke are members of Ocean Tracking Network Canada. Lennox was supported by a scholarship from the Natural Resources and Engineering Research Council of Canada (NSERC). Cooke is supported by NSERC (Discovery Grant), the Canada Research Chairs Program, and a Genome Canada Large-Scale Applied Research Project in Natural Resources and the Environment (“Sustaining Freshwater Fisheries in a Changing Environment”: Project code 242RTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lennox.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lennox, R.J., Crook, D.A., Moyle, P.B. et al. Toward a better understanding of freshwater fish responses to an increasingly drought-stricken world. Rev Fish Biol Fisheries 29, 71–92 (2019). https://doi.org/10.1007/s11160-018-09545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-018-09545-9

Keywords

Navigation