Skip to main content

Advertisement

Log in

A global review of freshwater crayfish temperature tolerance, preference, and optimal growth

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Conservation efforts, environmental planning, and management must account for ongoing ecosystem alteration due to a changing climate, introduced species, and shifting land use. This type of management can be facilitated by an understanding of the thermal ecology of aquatic organisms. However, information on thermal ecology for entire taxonomic groups is rarely compiled or summarized, and reviews of the science can facilitate its advancement. Crayfish are one of the most globally threatened taxa, and ongoing declines and extirpation could have serious consequences on aquatic ecosystem function due to their significant biomass and ecosystem roles. Our goal was to review the literature on thermal ecology for freshwater crayfish worldwide, with emphasis on studies that estimated temperature tolerance, temperature preference, or optimal growth. We also explored relationships between temperature metrics and species distributions. We located 56 studies containing information for at least one of those three metrics, which covered approximately 6 % of extant crayfish species worldwide. Information on one or more metrics existed for all 3 genera of Astacidae, 4 of the 12 genera of Cambaridae, and 3 of the 15 genera of Parastacidae. Investigations employed numerous methodological approaches for estimating these parameters, which restricts comparisons among and within species. The only statistically significant relationship we observed between a temperature metric and species range was a negative linear relationship between absolute latitude and optimal growth temperature. We recommend expansion of studies examining the thermal ecology of freshwater crayfish and identify and discuss methodological approaches that can improve standardization and comparability among studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angilletta MJ Jr (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Austin CM (1995) Effect of temperature and salinity on the survival and growth of juvenile redclaw (Cherax quadricarinatus). Freshw Crayfish 10:419–426

    Google Scholar 

  • Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM, Iwama GK (2002) Heat shock protein genes and their functional significance in fish. Gene 295:173–183

    Article  CAS  PubMed  Google Scholar 

  • Becker CD, Genoway RG (1979) Evaluation of the critical thermal maximum for determining tolerance of freshwater fish. Environ Biol Fish 4:245–256

    Article  Google Scholar 

  • Becker CD, Genoway RG, Merrill JA (1975) Resistance of a northwester crayfish, Pacifastacus leniusculus (Dana), to elevated temperatures. Trans Am Fish Soc 104:374–387

    Article  Google Scholar 

  • Beitinger TL, Fitzpatrick LC (1979) Physiological and ecological correlates of preferred temperature in fish. Am Zool 19:319–330

    Article  Google Scholar 

  • Beitinger TL, Bennett WA, McCauley RW (2000) Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fish 58:237–275

    Article  Google Scholar 

  • Bone JWP, Wild CH, Furse JM (2014) Thermal limit of Euastacus sulcatus (Decapoda: Parastacidae), a freshwater crayfish from the highlands of central eastern Australia. Mar Freshw Res 65:645–651

    Article  Google Scholar 

  • Bowler K, Gladwell RT, Duncan CJ (1973) Acclimatization to temperature and death at high temperatures in the crayfish Austropotamobius pallipies. Freshw Crayfish 1:122–131

    Google Scholar 

  • Bozinovic R, Pörtner HO (2015) Physiological ecology meets climate change. Ecol Evol 5:1025–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Brett JR (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am Zool 11:99–113

    Article  Google Scholar 

  • Bückle-Ramírez LF, Diaz-Herrera F, Correa-Sandoval F, Barón-Sevilla B, Hernández-Rodríguez M (1994) Diel thermoregulation of the crawfish Procambarus clarkii (Crustacea, Cambaridae). J Therm Biol 19:419–422

    Article  Google Scholar 

  • Buckley LB, Kingslover JG (2012) Functional and phylogenetic approaches to forecasting species responses to climate change. Annu Rev Ecol Evol Syst 43:205–226

    Article  Google Scholar 

  • Buisson L, Thuiller W, Lek S, Lim P, Grenouillet G (2008) Climate change hastens the turnover of stream fish assemblages. Glob Change Biol 14:2232–2248

    Article  Google Scholar 

  • Caine EA (1978) Comparative ecology of epigean and hypogean crayfish (Crustacea: Cambaridae) from northwestern Florida. Am Midl Nat 99:315–329

    Article  Google Scholar 

  • Calosi P, Bilton DT, Spicer JI, Votier SC, Atfield A (2010) What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J Anim Ecol 79:194–204

    Article  PubMed  Google Scholar 

  • Carey CS, Jones JW, Hallerman EM, Butler RS (2013) Determining optimum temperature form growth and survival of laboratory-propagated juvenile freshwater mussels. N Am J Aquac 75:532–542

    Article  Google Scholar 

  • Carmona-Osalde C, Rodriguez-Serna M, Olvera-Novoa MA, Gutierrez-Yurrita PJ (2004) Gonadal development, spawning, growth and survival of the crayfish Procambarus llamasi at three different water temperatures. Aquaculture 232:305–316

    Article  Google Scholar 

  • Casterlin ME, Reynolds WW (1977) Behavioral fever in crayfish. Hydrobiologia 56:99–101

    Article  Google Scholar 

  • Chown SL (2012) Trait-based approaches to conservation physiology: forecasting environmental change risks from the bottom up. Philos Trans R Soc B 367:1615–1627

    Article  Google Scholar 

  • Chucholl C (2011) Population ecology of an alien “warm water” crayfish (Procambarus clarkii) in a new cold habitat. Knowl Manag Aquat Ecosyst 401:29

    Article  Google Scholar 

  • Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 216:2771–2782

    Article  PubMed  Google Scholar 

  • Claussen DL (1980) Thermal acclimation in the crayfish, Orconectes rusticus and O. virilis. Comp Biochem Physiol A Comp Physiol 66A:377–384

    Article  Google Scholar 

  • Cooper BS, Williams BH, Angilletta MJ Jr (2008) Unifying indices of heat tolerance in ectotherms. J Therm Biol 33:320–323

    Article  Google Scholar 

  • Coutant CC (1977) Compilation of temperature preference data. J Fish Res Board Can 34:739–745

    Article  Google Scholar 

  • Coutant CC, Zachman KL, Cox DK, Pearman BL (1984) Temperature selection by juvenile striped bass in laboratory and field. Trans Am Fish Soc 113:666–671

    Article  Google Scholar 

  • Cox DK (1974) Effects of three heating rates on the critical thermal maximum of bluegill. In: Gibbons JW, Sharitz RR (eds) Thermal Ecology. US Atomic Energy Commission, Savannah, pp 158–163

    Google Scholar 

  • Cox DK, Beauchamp JJ (1982) Thermal resistance of juvenile crayfish, Cambarus bartoni (Fabricius): experiment and model. Am Midl Nat 108:187–193

    Article  Google Scholar 

  • Crandall K, Buhay J (2008) Global diversity of crayfish (Astacidae, Cambaridae, and Parastacidae—Decapoda) in freshwater. Hydrobiologia 595:295–301

    Article  Google Scholar 

  • Crawshaw LI (1974) Temperature selection and activity in the crayfish, Orconectes immunis. J Comp Physiol 95:315–322

    Article  Google Scholar 

  • Crawshaw LI (1983) Effects of thermal acclimation and starvation on temperature selection and activity in the crayfish, Orconectes immunis. Comp Biochem Physiol A Comp Physiol 74A:475–477

    Article  Google Scholar 

  • Cukerzis J (1973) Biologische grundlagen der method der kunstlichen aufzucht der brut Astacus astacus L. Freshw Crayfish 1:187–202

    Google Scholar 

  • Dallas HF, Ketley ZA (2011) Upper thermal limits of aquatic macroinvertebrates: comparing critical thermal maxima with 96-LT50 values. J Therm Biol 36:322–327

    Article  Google Scholar 

  • Diaz F, Re AD, Sierra E, Amador G (2004) Behavioral thermoregulation and critical limits applied to the culture of red claw crayfish Cherax quadricarinatus (Van Martens). Freshw Crayfish 14:90–98

    Google Scholar 

  • DiStefano RJ (2005) Trophic interactions between Missouri Ozarks stream crayfish communities and sport fish predators: increased abundance and size structure of predators cause little change in crayfish community density. Missouri Department of Conservation, Dingell-Johnson Project F-1-R-054, Study S-41, Job 4, Final report, Columbia, MO

  • DiStefano RJ, Black TR, Herleth-King SS, Kanno Y, Mattingly HT (2013) Life history of two populations of the imperiled crayfish Orconectes (Procericambarus) williamsi (Decapoda: Cambaridae) in southwestern Missouri, U.S.A. J Crustac Biol 33:15–24

    Article  Google Scholar 

  • Dove ADM, Allam B, Powers JJ, Sokoolwski MAS (2005) A prolonged thermal stress experiment on the American lobster Homarus americanus. J Shellfish Res 24:761–765

    Article  Google Scholar 

  • Dupré RK, Wood SC (1988) Behavioral temperature regulation by aquatic ectotherms during hypoxia. Can J Zool 66:2649–2652

    Article  Google Scholar 

  • Eaton JG, Scheller RM (1996) Effects of climate warming on fish thermal habitat in streams of the United States. Limnol Oceanogr 41:1109–1115

    Article  Google Scholar 

  • Eaton JG, McCormick JH, Goodno BE, O’Brien DG, Stefany HG, Hondzo M, Scheller RM (1995) A field information-based system for estimating fish temperature tolerances. Fisheries 20(4):10–18

    Article  Google Scholar 

  • Elliott JM, Elliott JA (2010) Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. J Fish Biol 77:1793–1817

    Article  CAS  PubMed  Google Scholar 

  • Ern R, Huong DTT, Phuong NT, Wang T, Bayley M (2014) Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean. J Exp Biol 217:809–814

    Article  PubMed  Google Scholar 

  • Espina S, Diaz-Herrera F, Bückle-Ramírez LF (1993) Preferred and avoided temperatures in the crawfish Procambarus clarkii (Decapoda, Cambaridae). J Therm Biol 18:35–39

    Article  Google Scholar 

  • Fangue NA, Hofmeister M, Schulte PM (2006) Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J Exp Biol 209:2859–2872

    Article  CAS  PubMed  Google Scholar 

  • Fetzner JW Jr (2014) The crayfish and lobster taxonomy browser. http://iz.carnegiemnh.org/crayfish/NewAstacidea/index.asp?sortby=ALLcrayfish. Accessed 11 Sept 2014

  • Firkins I, Holdich DM (1993) Thermal studies with three species of freshwater crayfish. Freshw Crayfish 9:241–248

    Google Scholar 

  • Frimpong EA, Angermeier PL (2009) Fish Traits: a database of ecological and life-history traits of freshwater fishes of the United States. Fisheries 34:487–495

    Article  Google Scholar 

  • Frost JV (1975) Australia crayfish. Freshw Crayfish 2:87–96

    Google Scholar 

  • Fry FEJ (1947) Effects of the environment on animal activity. University of Toronto studies, biological series 55. Publication of the Ontario Fisheries Research Laboratory, vol 68, pp 1–62

  • Galbraith HS, Blakeslee CJ, Lellis WA (2012) Recent thermal history influences thermal tolerance in freshwater mussel species (Bivalvia: Unionoida). Freshw Sci 31:83–92

    Article  Google Scholar 

  • García-Guerrero M, Hernández-Sandoval P, Orduña-Rojas J, Cortés-Jacinto E (2013) Effect of temperature on weight increase, survival, and thermal preference of juvenile redclaw crayfish Cherax quadricarinatus. Hidrobiológica 23:73–81

    Google Scholar 

  • Geddes MC, Musgrove RJ, Campbell NJH (1993) The feasibility of re-establishing the River Murray crayfish, Euastacus armatus, in the lower River Murray. Freshw Crayfish 9:368–379

    Google Scholar 

  • Gherardi F (2010) Invasive crayfish and freshwater fishes of the world. Rev Sci Tech 29:241–254

    CAS  PubMed  Google Scholar 

  • Gift JJ (1977) Application of temperature preference studies to environmental impact assessment. J Fish Res Board Can 34:746–749

    Article  Google Scholar 

  • González RA, Díaz F, Licea A, Re AD, Sánchez N, García-Esquivel Z (2010) Thermal preference, tolerance and oxygen consumption of adult white shrimp Litopanaeus vannamei (Boone) exposed to different acclimation temperatures. J Therm Biol 35:218–224

    Article  Google Scholar 

  • Hall LW Jr, Cincotta DA, Stauffer JR Jr, Hocutt CH (1978) Temperature preference of the crayfish Orconectes obscurus. Arch Environ Contamin Toxicol 7:379–383

    Article  Google Scholar 

  • Hammond KS, Hollows JW, Townsend CR, Lokman PM (2006) Effects of temperature and water calcium concentration on growth, survival and moulting of freshwater crayfish, Paranephrops zealandicus. Aquaculture 251:271–279

    Article  CAS  Google Scholar 

  • Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev 84:39–54

    Article  PubMed  Google Scholar 

  • Hellman PA (1992) The effect of temperature on growth and molting of the crayfish, Orconectes nais. MS thesis, Kansas State University, Manhattan

  • Hesni MA, Shabanipour N, Zahmatkesh A, Toutouni MM (2009) Effects of temperature and salinity on survival and moulting of the narrow-clawed crayfish, Astacus leptodactylus Eschscholtz, 1823 (Decapoda, Astacidea). Crustaceana 82:1495–1507

    Article  Google Scholar 

  • Holdich D (2014) How many extant crayfish species are there? In: Fetzner JW Jr (ed) Crayfish news 36(2):2–10

  • Huner JV (1988) Procambarus in North America and elsewhere. In: Holdich DM, Lowery RS (eds) Freshwater crayfish: biology, management and exploitation. Croom Helm, London

    Google Scholar 

  • Huner JV, Barr JE (1991) Red swamp crawfish: biology and exploitation, 3rd edn. Louisiana Sea Grant College Program, Center for Wetland Resources, Louisiana State University, Louisiana

    Google Scholar 

  • Huryn AD, Wallace JB (1987) Production and litter processing by crayfish in an Appalachian mountain stream. Freshw Biol 18:277–286

    Article  Google Scholar 

  • Jobling M (1981) Temperature tolerance and the final preferendum-rapid methods for the assessment of optimum growth temperatures. J Fish Biol 19:439–455

    Article  Google Scholar 

  • Jones CM (1995) Effect of temperature on growth and survival of the tropical freshwater crayfish Cherax quadricarinatus (Von Martens) (Decopoda, Parastacidae). Freshw Crayfish 8:391–398

    Google Scholar 

  • Keller TA, Hazlett BA (2010) Thermal preferences and distribution of northern Michigan crayfishes. Northeast Nat 17:615–628

    Article  Google Scholar 

  • Kellogg RL, Gift JJ (1983) Relationship between optimum temperatures for growth and preferred temperatures for the young of four fish species. Trans Am Fish Soc 112:424–430

    Article  Google Scholar 

  • Kelly MW, Sanford E, Grosberg RK (2012) Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc R Soc B 279:349–356

    Article  PubMed  Google Scholar 

  • Kimball ME, Miller JM, Whitfield PE, Hare JA (2004) Thermal tolerance and potential distribution of invasive lionfish (Pterois volitans/miles complex) on the east coast of the United States. Mar Ecol Prog Ser 283:269–278

    Article  Google Scholar 

  • King CR (1994) Growth and survival of redclaw crayfish hatchlings (Cherax quadricarinatus von Martens) in relation to temperature, with comments on the relative suitability of Cherax quadricarinatus and Cherax destructor for culture in Queensland. Aquaculture 122:75–80

    Article  Google Scholar 

  • Kivivuori LA (1994) Temperature selection behaviour of cold- and warm-acclimated crayfish [Astacus astacus (L.)]. J Therm Biol 19:291–297

    Article  Google Scholar 

  • Köksal G (1988) Astacus leptodactylus in Europe. In: Holdich DM, Lowery RS (eds) Freshwater crayfish: biology, management and exploitation. Croom Helm, London

    Google Scholar 

  • Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236

    Article  CAS  PubMed  Google Scholar 

  • Larsson S (2005) Thermal preference of Arctic charr, Salvelinus alpinus, and brown trout, Salmo trutta—implications for their niche segregation. Environ Biol Fish 73:89–96

    Article  Google Scholar 

  • Layne JR Jr, Manis ML, Claussen DL (1985) Seasonal variation in the time course of thermal acclimation in the crayfish Orconectes rusticus. Freshw Invertebr Biol 4:98–104

    Article  Google Scholar 

  • Layne JR Jr, Claussen DL, Manis ML (1987) Effects of acclimation temperature, season, and time of day on the critical thermal maxima and minima of the crayfish Orconectes rusticus. J Therm Biol 12:183–187

    Article  Google Scholar 

  • Lessard JL, Hayes DB (2003) Effects of elevated water temperature on fish and macroinvertebrate communities below small dams. River Res Appl 19:721–732

    Article  Google Scholar 

  • Loring MW, Hill LG (1976) Temperature selection and shelter utilization of the crayfish, Orconectes causeyi. Southwest Nat 21:219–226

    Article  Google Scholar 

  • Lutterschmidt WI, Hutchison VH (1997) The critical thermal maximum: history and critique. Can J Zool 75:1561–1574

    Article  Google Scholar 

  • Mather D, Schutsky RM, Purdy EJ Jr (1982) Temperature preference and avoidance responses of the crayfish, Orconectes obscurus, and associated statistical problems. Can J Fish Aquat Sci 39:548–553

    Article  Google Scholar 

  • McCauley RW (1977) Laboratory methods for determining temperature preference. J Fish Res Board Can 34:749–752

    Article  Google Scholar 

  • McCauley RW, Casselman JM (1981) The final preferendum as an index of optimum growth in fish. In: Proceedings of the world symposium on aquaculture heated effluents and recirculation systems, vol 11, pp 81–93

  • Meade MM, Doeller JE, Kraus DW, Watts SA (2002) Effects of temperature and salinity on weight gain, oxygen consumption rate, and growth efficiency in juvenile red-claw crayfish Cherax quadricarinatus. J World Aquac Soc 33:188–198

    Article  Google Scholar 

  • Mills BJ, Morrissy NM, Huner JV (1994) Cultivation of freshwater crayfishes in Australia. In: Huner JV (ed) Freshwater crayfish aquaculture in North America, Europe, and Australia Families Astacidae, Cambaridae, and Parastacidae. Food Products Press, New York, pp 217–289

    Google Scholar 

  • Mirenda RJ (1975) Temperature tolerance of the crayfish Cambarus bartoni (Fabricius). MS thesis, Wake Forest University, Winston-Salem

  • Mirenda RJ, Dimock RV Jr (1985) Temperature tolerance of the crayfish Cambarus acuminatus Faxon (Decapoda, Astacidea). Crustaceana 48:249–259

    Article  Google Scholar 

  • Mora C, Maya MF (2006) Effect of the rate of temperature increase of the dynamic method on the heat tolerance of fishes. J Therm Biol 31:337–341

    Article  Google Scholar 

  • Morrissy NM (1990) Optimum and favorable temperatures for growth of Cherax tenuimanus (Smith 1912) (Decapoda: Parastacidae). Aust J Mar Fresh Res 41:735–746

    Article  Google Scholar 

  • Mundahl ND (1989) Seasonal and diel changes in thermal tolerance of the crayfish Orconectes rusticus, with evidence for behavioral thermoregulation. J N Am Benthol Soc 8:173–179

    Article  Google Scholar 

  • Mundahl ND, Benton MJ (1990) Aspects of the thermal ecology of the rusty crayfish Orconectes rusticus (Girard). Oecologia 82:210–216

    Article  Google Scholar 

  • Nakata K, Hamano T, Hayaski K, Kawia T (2002) Lethal limits of high temperature for two crayfishes, the native species Cambaroides japonicas and the alien species Pacifastacus leniusculus in Japan. Fish Sci 68:763–776

    Article  CAS  Google Scholar 

  • Narum SR, Campbell NR, Meyer KA, Miller MR, Hardy RW (2013) Thermal adaptation and acclimation of ectotherms from differing aquatic environments. Mol Ecol 22:3090–3097

    Article  PubMed  Google Scholar 

  • Norin T, Malte H, Clark TD (2014) Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J Exp Biol 217:244–251

    Article  PubMed  Google Scholar 

  • Nyström P (2002) Chapter 5 Ecology. In: Holdich DM (ed) Biology of freshwater crayfish. Blackwell Science, Oxford, pp 192–224

    Google Scholar 

  • Paglianti A, Messana G, Gherardi F (2004) Oxygen consumption at different temperatures in YOY crayfish: a comparison between indigenous and invasive species. Freshw Crayfish 14:147–152

    Google Scholar 

  • Pandolfo TJ, Cope WG, Arellano C, Bringolf RB, Barnhart C, Hammer E (2010) Upper thermal tolerances of early life stages of freshwater mussels. J N Am Benthol Soc 29:959–969

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365

    Article  Google Scholar 

  • Peck SK (1985) Effects of aggressive interaction on temperature selection by the crayfish, Orconectes virilis. Am Midl Nat 114:159–167

    Article  Google Scholar 

  • Policar T, Smyth J, Flanigan M, Kozák P, Kouba A (2010) Optimum water temperature for intensive production of Austropotamobius pallipes (Lereboullet) juveniles. Freshw Crayfish 17:51–55

    Google Scholar 

  • Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893

    Article  PubMed  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  PubMed  Google Scholar 

  • Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779

    Article  PubMed  Google Scholar 

  • Probst WE, Rabeni CF, Covington WG, Marteney RE (1984) Resource use by stream-dwelling Rock bass and Smallmouth bass. Trans Am Fish Soc 113:283–294

    Article  Google Scholar 

  • Rabeni CF, Gossett M, McClendon DD (1995) Contribution of crayfish to benthic invertebrate production and trophic ecology of an Ozark stream. Freshw Crayfish 10:163–173

    Google Scholar 

  • Recsetar MS, Bonar SA, Feuerbacher OG (2014) Growth and survival of Apache trout under static and fluctuating temperature regimes. Trans Am Fish Soc 145:1247–1254

    Article  Google Scholar 

  • Reynolds WW, Casterlin ME (1979) Behavioral thermoregulation and the “Final Preferendum” paradigm. Am Zool 19:211–224

    Article  Google Scholar 

  • Richards FP, Reynolds WW, McCauley RW (1997) Temperature preference studies in environmental impact assessments: an overview with procedural recommendations. J Fish Res Board Can 34:729–761

    Google Scholar 

  • Richman NI et al (2015) Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philos Trans R Soc B 370:20140060

    Article  Google Scholar 

  • Richwell A (2013) An assessment of critical thermal maximum (CTmax) of the invasive Australian crayfish, Cherax quadricarinatus, and native macroinvertebrates, Caridina nilotica and Coenagrionidae in Lake Kariba, Zimbabwe. MS thesis, Bindura University of Science Education, Zimbabwe

  • Rognerud S, Appelberg M, Effereide A, Pursiainen M (1989) Water quality and effluents. In: Skurdal K, Westman K, Bergan PI (eds) Crayfish culture in Europe. The Norwegian Directorate for Nature Management, Trondheim

    Google Scholar 

  • Rohde K, Heap M, Heap D (1993) Rapoport’s Rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. Am Nat 142:1–16

    Article  Google Scholar 

  • Sargent LW, Golladay SW, Covich AP, Opsahl SP (2011) Physiochemical habitat association of a native and a non-native crayfish in the lower Flint River, Georgia: implications for invasion success. Biol Invasions 13:499–511

    Article  Google Scholar 

  • Selong JH, McMahon TE, Zale AV, Barrows FT (2001) Effect of temperature on growth and survival of Bull trout, with application of an improved method for determining thermal tolerance in fishes. Trans Am Fish Soc 130:1026–1037

    Article  Google Scholar 

  • Semple GP, Rouse DB, McLain KR (1995) Cherax destructor, C. tenuimanus and C. quadricarinatus (Decapoda: Parastacidae): a comparative review of biological traits relating to aquaculture potential. Freshw Crayfish 8:495–503

    Google Scholar 

  • Sibley PJ, Doldich DM, Richman N (2011) Monitoring the global status of crayfish, with particular reference to the white-clawed crayfish. In: Ress M, Nightingale J, Holdich DM (eds) Species survival: securing white-clawed crayfish in a changing environment. Proceedings of a conference held on 16th and 17th November in Bristol, UK, pp 42–52

  • Simčič T, Pajk F, Jaklič M, Brancelj A, Vrezec A (2014) The thermal tolerance of crayfish could be estimated from respiratory electron transport system activity. J Therm Biol 41:21–30

    Article  PubMed  CAS  Google Scholar 

  • Söderbäck B, Appelberg M, Odelstgröm T, Lindqvist U (1988) Food consumption and growth of the crayfish Astacus astacus L. in laboratory experiments. Freshw Crayfish 7:145–153

    Google Scholar 

  • Souty-Grosset C, Reynolds JD (2010) Current ideas on methodological approaches in European crayfish conservation and restocking procedures. Knowl Manag Aquat Ecosyst 2009:394–395

    Google Scholar 

  • Spoor WA (1955) Loss and gain of heat-tolerance by the crayfish. Biol Bull 108:77–87

    Article  Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256

    Article  Google Scholar 

  • Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc B 278:1823–1830

    Article  PubMed  Google Scholar 

  • Tattersall GJ, Luebbert JP, LePine OK, Ormerod KG, Mercier AJ (2012) Thermal games in crayfish depend on establishment of social hierarchies. J Exp Biol 215:1892–1904

    Article  PubMed  Google Scholar 

  • Taylor RC (1984) Thermal preference and temporal distribution in three crayfish species. Comp Biochem Physiol A Comparative Physiology 77A:513–517

    Article  Google Scholar 

  • Taylor CA, Schuster GA, Cooper JE, DiStefano RJ, Eversole AG, Hamr P, Hobbs HH III, Robison HW, Skelton CE, Thoma RF (2007) A reassessment of the conservation status of crayfish of the United States and Canada after 10 + years of increased awareness. Fisheries 32:372–389

    Article  Google Scholar 

  • Usio N, Townsend CR (2001) The significance of the crayfish Paranephrops zealandicus as shredders in a New Zealand headwater stream. J Crustac Biol 21:354–359

    Article  Google Scholar 

  • Usio N, Nakajima H, Kamiyama R, Wakana I, Hiruta S, Takamura N (2005) Predicting the distribution of invasive crayfish (Pacifastacus leniusculus) in a Kusiro Moor marsh (Japan) using classification and regression trees. Ecol Res 21:271–277

    Article  Google Scholar 

  • Verhoef GD, Austin CM, Jones PL, Stagnitti F (1998) Effect of temperature on molt increment and intermolt period of a juvenile Australian fresh-water crayfish, Cherax destructor. J Crustac Biol 18:673–679

    Article  Google Scholar 

  • Ward JV, Stanford JA (1982) Thermal responses in the evolutionary ecology of aquatic insects. Ann Rev Entomol 27:97–117

    Article  Google Scholar 

  • Westhoff JT, Paukert CP (2014) Climate change simulations predict altered biotic response in a thermally heterogeneous stream system. PLoS ONE 9(10):e111438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wetzel JE II, Brown PB (1993) Growth and survival of juvenile Orconectes virilis and Orconectes immunis at different temperatures. J World Aquac Soc 24:339–343

    Article  Google Scholar 

  • Whitledge GW, Rabeni CF (2002) Maximum daily consumption and respiration rates at four temperatures for five species of crayfish from Missouri, U.S.A. (Decapoda: Orconectes spp.). Crustaceana 75:1119–1132

    Article  Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B 365:2093–2106

    Article  Google Scholar 

Download references

Acknowledgments

The Missouri Cooperative Fish and Wildlife Research Unit is jointly sponsored by the Missouri Department of Conservation, the University of Missouri, the U.S. Geological Survey, the U.S. Fish and Wildlife Service, and the Wildlife Management Institute. Any use of trade, produce or firm name is for descriptive purposes only and does not imply endorsement by the U.S. Government. We thank D. Magoulick and two anonymous reviewers for comments that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Westhoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westhoff, J.T., Rosenberger, A.E. A global review of freshwater crayfish temperature tolerance, preference, and optimal growth. Rev Fish Biol Fisheries 26, 329–349 (2016). https://doi.org/10.1007/s11160-016-9430-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-016-9430-5

Keywords

Navigation