Skip to main content
Log in

Nitrous oxide decomposition over La0.3Sr0.7Co0.7Fe0.3O3−δ catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Nano-sized La0.3Sr0.7Co0.7Fe0.3O3-δ (LSFC3773) was prepared as a catalyst for nitrous oxide (N2O) decomposition by a sonochemical method. The catalyst provided a complete conversion of N2O at 450 °C, showing the best performance among most recent industrial catalysts, and offered 99.7–100% conversion at higher temperatures, e.g., 540–600 °C. A suitable operating temperature range for the reaction to avoid NOx formation is from 400 to 600 °C. The activation energy and the pre-exponential factor were 42.96 kJ/mol and 161,135.35 mol/gcat h bar. Oxygen inhibition was observed and was more obvious as the sample approached full surface coverage (\(\theta \; = \;1\)) at 375 °C using a 100% N2O feed. The reaction occurred via the Eley–Rideal mechanism. Two possible model mechanisms were suggested according to the experimental phenomenon and the rate coefficient order of each elementary steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li T, Rabuni MF, Kleiminger L, Wang B, Kelsall GH, Hartley UW, Li K (2016) Energy Environ Sci 9:3682–3686

    Article  CAS  Google Scholar 

  2. Seinfeld JH, Pandis SN (1998) Atmospheric Chemistry and Physics from air pollution to climate change. Wiley, New York

    Google Scholar 

  3. Anderson B, Bartlett K, Frolking S, Hayhoe K, Jenkins J, Salas W (2010) Methane and nitrous emissions from natural sources, EPA 430-R-10-001. EPA, Washington DC

    Google Scholar 

  4. Breidenich C, Magraw D, Rowley A, Rubin JW (1998) Am J Int Law 92:315–331

    Article  Google Scholar 

  5. Eurostat Statistics Explained (2017) Greenhouse gas emission statistics—emission inventories. http://ec.europa.eu. Accessed 30 Mar 2017

  6. Perez-Ramirez J, Kapteijn F, Schoffel K, Moulijn JA (2003) Appl Catal B 44:117–151

    Article  CAS  Google Scholar 

  7. Shimizu A, Tanaka K, Fujimori M (2000) Chemosphere-Global Change Sci 2:425

    Article  CAS  Google Scholar 

  8. Centi G, Generali P, Dall’Olio L, Perathoner S, Rak Z (2000) Ind Eng Chem Res 39:131

    Article  CAS  Google Scholar 

  9. Wojtowicz MA, Miknis FP, Grimes RW, Smith WW, Serio MA (2000) J Hazard Mater 74:81

    Article  CAS  PubMed  Google Scholar 

  10. Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Appl Catal B 9:25

    Article  CAS  Google Scholar 

  11. Lide DR (1995) Handbook of chemistry and physics, 76th edn. CRC Press, Florida

    Google Scholar 

  12. Zabilskiy M, Djinovic P, Tchernychova E, Tkachenko OP, Kustov LM, Pinta A (2015) ACS Catal 5:5357–5365

    Article  CAS  Google Scholar 

  13. Perbandt C, Bacher V, Groves M, Schwefer M, Siefert R, Turek T (2013) Chem Ing Tech 85:705–709

    Article  CAS  Google Scholar 

  14. Huang C, Zhu Y, Wang X, Liu X, Wang J, Zhang T (2017) J Catal 347:9–20

    Article  CAS  Google Scholar 

  15. Zeng HC, Pang XY (1997) Appl Catal B 13:113–122

    Article  CAS  Google Scholar 

  16. Yuzaki K, Yarimizu T, Aoyagi K, Ito S, Kunimori K (1998) Catal Today 45:129–134

    Article  CAS  Google Scholar 

  17. Yuichi O, Kazushi K, Ming B, Tatsuo M (1999) J Chem Phys 110:8221–8224

    Article  Google Scholar 

  18. Stoeva N, Atanasova G, Spassova I, Nickolov R, Khristova M (2016) Reac Kinet Mech Cat 118:199–214

    Article  CAS  Google Scholar 

  19. Ciambelli P, Benedetto AD, Garufi E, Pirone R, Russo G (1998) J Catal 175:161–169

    Article  CAS  Google Scholar 

  20. Cruz RS, Mascarenhas AJS, Andrade HMC (1998) Appl Catal B 18:223–231

    Article  Google Scholar 

  21. Scher M, Kesore K, Monnig R, Schwieger W, Tissler A, Turek T (1999) Appl Catal A 184:249–256

    Article  Google Scholar 

  22. Ivanova DV, Pinaeva LG, Sadovskaya EM, Isupova LA (2016) J Mol Catal A 412:34–38

    Article  CAS  Google Scholar 

  23. Dacquin JP, Lancelot C, Dujardin C, Costa PD, Djega-Mariadassou G, Beaunier P, Kaliaguine S, Vaudreuil S, Royer S, Granger P (2009) Appl Catal B 91:596–604

    Article  CAS  Google Scholar 

  24. Medkhali AHA, Narasimharao K, Basahel SN, Mokhtar M (2014) J Memb Separ Tech. 3:206–212

    Article  CAS  Google Scholar 

  25. Wu Y, Cordier C, Berrier E, Nuns N, Dujardin C, Granger P (2013) Appl Catal B 140–141:151–163

    Article  CAS  Google Scholar 

  26. Li K, Wang XF, Zeng HC (1997) Chem Eng Res Des 75:807–812

    Article  CAS  Google Scholar 

  27. Akihiro T, Hisahiro E, Yasutake T (2015) Reac Kinet Mech Cat 114:409–420

    Article  CAS  Google Scholar 

  28. Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Appl Catal B 9:25

    Article  CAS  Google Scholar 

  29. Swamy CS (1996) Cristopher. J Catal Rev Sci Eng 34:409–425

    Article  Google Scholar 

  30. Arai H, Yamada T, Eguchi K (1986) Seiyama. Appl Catal 26:265–276

    Article  CAS  Google Scholar 

  31. Beaurain A, Dujardin C, Granger P (2012) Appl Catal B 125:149–157

    Article  CAS  Google Scholar 

  32. Ivanov DV, Sadovskaya EM, Pinaeva LG, Isupova LA (2009) J Catal 267:5–13

    Article  CAS  Google Scholar 

  33. Russo N, Mescia D, Fino D, Saracco G, Specchia V (2007) Ind Eng Chem Res 46:4226–4231

    Article  CAS  Google Scholar 

  34. Alini S, Basile F, Blasioli S, Vaccari A (2005) Appl Catal B 70:323–329

    Article  CAS  Google Scholar 

  35. Babiniec SM, Coker EN, Miller JE, Ambrosini A (2015) Sol Energy 118:451–459

    Article  CAS  Google Scholar 

  36. Franken T, Palkovits R (2015) Appl Catal B 176–177:298–305

    Article  CAS  Google Scholar 

  37. Technical Note (2012) BASF-The Chemical Company, New Jersey. www.catalysts.basf.com. Accessed Feb 2012

  38. Zhang R, Hua C, Wang B, Jiang Y (2016) J Catal 6:200

    Google Scholar 

  39. Alini S, Basile F, Blasioli S, Rinaldi C, Vaccari A (2007) Appl Catal B 70:323–329

    Article  CAS  Google Scholar 

  40. Charoonsuk T, Vittayakorn W, Vittayakorn N, Seeharaj P, Maensiri S (2015) Ceram Int 41:S87–S94

    Article  CAS  Google Scholar 

  41. Russo N, Fino D, Saracco G, Specchia V (2007) Ind Eng Chem Res 119:228–232

    CAS  Google Scholar 

  42. Shimizu A, Tanaka K, Fujimori M (2000) Chemosphere-Global Change Sci 2:425–443

    Article  CAS  Google Scholar 

  43. Berger RJ, Pérez-Ramirez J, Kapteijn F, Moulijn JA (2002) J Chem Eng 90:173–183

    Article  CAS  Google Scholar 

  44. Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Appl Catal B 9:25–64

    Article  CAS  Google Scholar 

  45. Ivanov DV, Pinaeva LG, Sadovskaya EM, Isupova LA (2016) J Mol Catal A 412:34–38

    Article  CAS  Google Scholar 

  46. Leglise J, Petunchi JO, Hall WK (1984) J Catal 86:392–399

    Article  CAS  Google Scholar 

  47. Monshi A, Foroughi MR, Monshi MR (2012) World J Nano Sci Eng 2:154–160

    Article  CAS  Google Scholar 

  48. Mieda H, Mineshige A, Saito A, Yazawa T, Yoshioka H, Mori R (2014) J Power Sources 272:422–426

    Article  CAS  Google Scholar 

  49. Da Conceicao L, Silva A, Ribeiro NFP, Souza MMVM (2011) Mater Res Bull 46:308–314

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support from grants from the Thailand Research Fund (TRG5880059) and King Mongkut’s University of Technology North Bangkok (KMUTNB-GOV-59-43 and KMUTNB-NRU-58-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. W. Hartley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartley, U.W., Tongnan, V., Laosiripojana, N. et al. Nitrous oxide decomposition over La0.3Sr0.7Co0.7Fe0.3O3−δ catalyst. Reac Kinet Mech Cat 125, 85–97 (2018). https://doi.org/10.1007/s11144-018-1398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1398-9

Keywords

Navigation