Skip to main content
Log in

Estimating discrete-choice games of incomplete information: Simple static examples

  • Published:
Quantitative Marketing and Economics Aims and scope Submit manuscript

Abstract

We investigate the computational aspect of estimating discrete-choice games under incomplete information. In these games, multiple equilibria can exist. Also, different values of structural parameters can result in different numbers of equilibria. Consequently, under maximum-likelihood estimation, the likelihood function is a discontinuous function of the structural parameters. We reformulate the maximum-likelihood estimation problem as a constrained optimization problem in the joint space of structural parameters and economic endogenous variables. Under this formulation, the objective function and structural equations are smooth functions. The constrained optimization approach does not require repeatedly solving the game or finding all the equilibria. We use two static-game models to demonstrate this approach, conducting Monte Carlo experiments to evaluate the finite-sample performance of the maximum-likelihood estimator, two-step estimators, and the nested pseudo-likelihood estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. An equilibrium p is stable under best-response iteration if ρ[∇ p Ψ(p, x;𝜃)], the spectral radius of the Jacobian mapping ∇ p Ψ(p, x;𝜃), is less than 1. It is easy to check that at \(\boldsymbol {p}_{2}^{*}\), \(\rho [\nabla _{\boldsymbol {p}} \boldsymbol {\Psi }(\boldsymbol {p^{*}_{2}}, \boldsymbol {x}; \boldsymbol {\theta }^{0})] = 1.148\), while at \(\boldsymbol {p}_{1}^{*}\) and \(\boldsymbol {p}_{3}^{*}\), \(\rho [\nabla _{\boldsymbol {p}} \boldsymbol {\Psi }(\boldsymbol {p^{*}_{1}}, \boldsymbol {x}; \boldsymbol {\theta }^{0})] = 0.4099\) and \(\rho [\nabla _{\boldsymbol {p}} \boldsymbol {\Psi }(\boldsymbol {p^{*}_{3}}, \boldsymbol {x}; \boldsymbol {\theta }^{0})] = 0.8398\), respectively.

  2. The derivation of the constrained optimization formulation under a general equilibrium selection mechanism is given in Appendix A.

  3. Pesendorfer and Schmidt-Dengler (2008) proposed an asymptotic least-squares estimator and derived the asymptotically optimal weight matrix. Here, we do not derive the optimal weight matrix and use the identity matrix as the weight matrix in this example.

  4. As noted by Pakes et al. (2007), the pseudo likelihood function is an inappropriate criterion function to use in the second step. The reason that we still use the 2S-PML estimator in our Monte Carlo experiments is to provide a direct comparison on the performance of the 2S-PML to that of the ML estimator and the NPL estimator.

  5. One can improve the performance of the 2S-LS estimator by using the optimal weighting matrix, which has been suggested by Pesendorfer and Schmidt-Dengler (2008).

  6. In our experiment, the NPL algorithm usually converges to the same parameter estimates from starting values \(\widehat {\boldsymbol {P}}_{\text {freq}}\), \(\frac {3\widehat {\boldsymbol {P}}_{\text {freq}}}{4}\), and \( \frac {\widehat {\boldsymbol {P}}_{\text {freq}}}{2}\).

  7. These are Row 117 to 316 in Jia’s data file, XMat97.out.

  8. In the whole date sets with 2065 counties, 33.6 % (694 counties) had Walmart stores only, 5 % (103 counties) had Kmart stores only, and 13.9 % (287 counties) had both Walmart and Kmart stores.

  9. These numbers are close to those reported in Jia (2008), Ellickson and Misra (2011) and Misra (2013).

  10. We provide more detailed discussion on ρ[∇ P Ψ(P, X;𝜃 0)] and the condition on δ 0 in Appendix B.

  11. Results for T = 10 and T = 25 provide similar observations to those for T = 5 and T = 50, and are omitted here.

References

  • Arcidiacono, P., & Miller, R.A. (2011). CCP estimation of dynamic discrete choice models with unobserved heterogeneity. Econometrica, 79, 1823–1868.

    Article  MathSciNet  MATH  Google Scholar 

  • Aguirregabiria, V., & Mira, P. (2007). Sequential estimation of dynamic discrete games. Econometrica, 75, 1–53.

    Article  MathSciNet  MATH  Google Scholar 

  • Aitchison, J., & Silvey, S.D. (1958). Maximum likelihood estimation of parameters subject to restraints. Annals of Mathematical Statistics, 29, 813–828.

    Article  MathSciNet  MATH  Google Scholar 

  • Bajari, P., Benkard, C.L., Levin, J. (2007). Estimating dynamic games of imperfect competition. Econometrica, 75, 1331–1370.

    Article  MathSciNet  MATH  Google Scholar 

  • Bajari, P., Hong, H., Krainer, J., Nekipelov, D. (2010). Estimating static models of strategic interactions. Journal of Business and Economic Statistics, 28, 469–482.

    Article  MathSciNet  MATH  Google Scholar 

  • Berry, S. (1992). Estimation of a model of entry in the airline industry. Econometrica, 60, 889–917.

    Article  MATH  Google Scholar 

  • Ciliberto, F., & Tamer, E. (2009). Market structure and multiple equilibria in airline markets. Econometrica, 77, 1791–1828.

    Article  MathSciNet  Google Scholar 

  • de Paula, A. (2013). Econometric analysis of games with multiple equilibria. Annual Review of Econonomics, 5, 107–131.

    Article  Google Scholar 

  • Ellickson, P., & Misra, S. (2008). Supermarket pricing strategies. Marketing Science, 27, 811–828.

    Article  Google Scholar 

  • Ellickson, P., & Misra, S. (2011). Estimating discrete games. Marketing Science, 30, 997–1010.

    Article  Google Scholar 

  • Fudenberg, D., & Tirole, J. (1991). In Game theory. Cambridge: MIT Press.

    Google Scholar 

  • Gourieroux, C., & Monfort, A. (1995). In Statistics and econometric models Vol. 1. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Hotz, J., & Miller, R.A. (1993). Conditional choice probabilities and the estimation of dynamic models. Review of Economic Studies, 60, 497–529.

    Article  MathSciNet  MATH  Google Scholar 

  • Jia, P. (2008). What happens when Wal-Mart comes to town: an empirical analysis of the discount retail industry. Econometrica, 76, 1263–1316.

    Article  MATH  Google Scholar 

  • Judd, K., Renner, P., Schmedders, K. (2012). Finding all pure strategy equilibria in dynamic and static games with continuous strategies. Quantitative Economics, 3, 289–331.

    Article  MathSciNet  Google Scholar 

  • Kohlberg, E., & Mertens, J.-F. (1986). On the strategic stability of equilibria. Econometrica, 54, 1003–1038.

    Article  MathSciNet  MATH  Google Scholar 

  • Mertens, J.-F. (1989). Stable equilibria–a reformulation: Part I. Definition and basic properties. Mathematics of Operations Research, 14, 575–625.

    Article  MathSciNet  MATH  Google Scholar 

  • Mertens, J.-F. (1991). Stable equilibria–a reformulation: Part II. Discussion of the definition, and further results. Mathematics of Operations Research, 16, 694–753.

    Article  MathSciNet  MATH  Google Scholar 

  • Misra, S. (2013). Markov chain Monte Carlo for incomplete information discrete games. Quantitative Marketing and Economics, 11, 117–153.

    Article  ADS  Google Scholar 

  • Orhun, A. Y. (2013). Spatial differentiation in the supermarket industry: the role of common information. Quantitative Marketing and Economics, 11, 3–37.

    Article  ADS  Google Scholar 

  • Pakes, A., Ostrovsky, M., Berry, S. (2007). Simple estimators for the parameters of discrete dynamic games, with entry/exit examples. RAND Journal of Economics, 38, 373–399.

    Article  Google Scholar 

  • Pakes, A., Porter, J., Ho, K., Ishii, J. (2011). In Moment Inequalities and Their Applications. Working paper: Harvard University.

    Google Scholar 

  • Pesendorfer, M., & Schmidt-Dengler, P. (2008). Asymptotic least squares estimators for dynamic games. Review of Economic Studies, 75, 901–928.

    Article  MathSciNet  MATH  Google Scholar 

  • Pesendorfer, M., & Schmidt-Dengler, P. (2010). Sequential estimation of dynamic discrete games: a comment. Econometrica, 78, 833–842.

    Article  MathSciNet  MATH  Google Scholar 

  • Rust, J. (1987). Optimal replacement of GMC bus engines: an empirical model of Harold Zurcher. Econometrica, 55, 999–1033.

    Article  MATH  Google Scholar 

  • Rust, J. (2008). Private communication.

  • Seim, K. (2006). An empirical model of firm entry with endogenous product-type choices. RAND Journal of Economics, 37, 619–640.

    Article  Google Scholar 

  • Su, C.-L., & Judd, K.L. (2012). Constrained optimization approaches to estimation of structural models. Econometrica, 80, 2213–2230.

    Article  MathSciNet  MATH  Google Scholar 

  • Silvey, S.D. (1975). Statistical inference. London: Chapman & Hall.

    MATH  Google Scholar 

  • Sweeting, A. (2009). The strategic timing of radio commercials: an empirical analysis using multiple equilibria. RAND Journal of Economics, 40, 710–742.

    Article  Google Scholar 

  • Vitorino, M.A. (2012). Empirical entry games with complementarities: an application to the shopping center industry. Journal of Marketing Research, 49, 175–191.

    Article  Google Scholar 

  • Zhu, T., & Singh, V. (2009). Spatial competition with endogenous location choices: an application to discount retailing. Quantitative Marketing and Economics, 7, 1–35.

    Article  Google Scholar 

Download references

Acknowledgments

I thank the editor Greg M. Allenby and two anonymous referees for insightful comments and helpful suggestions. I have benefited greatly from discussions with Panle Jia Barwick, Kenneth L. Judd, Sanjog Misra, Ariel Pakes, Peter E. Rossi, and John Rust, and comments from seminar participants at the 2010 QME Conference, Boston College, and Harvard University. I am very grateful to John Rust for developing and suggesting the first static-game example used in this paper and to Harry J. Paarsch for carefully reading this paper. I acknowledge the financial support from the IBM Faculty Research Fund at The University of Chicago Booth School of Business. All errors are mine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Che-Lin Su.

Appendices

Appendix A: The constrained optimization formulation for the ML estimator under general equilibrium selection mechanism

In this appendix, we derive the constrained optimization formulation of the maximum likelihood estimation problem under a general equilibrium selection mechanism. To simplify the notation, we only consider the case of one market and drop the superscript m for market index in the notation used in Section 3.

Given the parameter vector 𝜃 and firms’ observed types x, let \({\mathcal E}(\boldsymbol {\theta }, \boldsymbol {x}) = \{ \bar {\boldsymbol {p}}_{k}(\boldsymbol {\theta }) \}_{k}\) denote the set of BN equilibria, where \(\bar {\boldsymbol {p}}_{k}(\boldsymbol {\theta }) = (\bar {p}_{ka}(\boldsymbol {\theta }), \bar {p}_{kb}(\boldsymbol {\theta })) \) is the k-th equilibrium that solves the BN equilibrium (4). For the constrained optimization approach, given 𝜃, an equilibrium selection mechanism \(\boldsymbol {\lambda } = \{\lambda _{k}\}_{k=1}^{|{\mathcal E}(\boldsymbol {\theta }, \boldsymbol {x})|}\) and any given set of probabilities \(\{\boldsymbol {p}_{k} = (p_{ka}, p_{kb})\}_{k=1}^{|{\mathcal E}(\boldsymbol {\theta }, \boldsymbol {x})|}\) (which do not need to be the equilibrium probabilities that solve the BN equilibrium equation), we define the augmented logarithm of the likelihood function of observing the decisions \(\boldsymbol {y} = ({y_{a}^{t}}, {y_{b}^{t}})_{t=1}^{T}\) as

$$\mathfrak{L} \left[ \boldsymbol{\theta}, \boldsymbol{\lambda}, \{\boldsymbol{p}_{k}\}_{k} \right] \, =\, \displaystyle \sum\limits_{t=1}^{T}\! \log \!\left\{\! \sum\limits_{k=1}^{|{\mathcal E}(\boldsymbol{\theta}, \boldsymbol{x})|} \!\lambda_{k} \left[\! (p_{ka})^{{y_{a}^{t}}} \!\right] \!\left[\! \left(1 \, -\, p_{ka} \right)^{1\, -\, {y_{a}^{t}}} \!\right]\! \left[\! (p_{kb})^{{y_{b}^{t}}} \!\right]\! \left[\! \left(1 \, -\, p_{kb}\right)^{1\, -\, {y_{b}^{t}}} \!\right] \!\right\}\!.$$
(26)

The constrained optimization formulation of the ML estimator is then defined as:

$$\begin{array}{ll} \displaystyle \mathop{\text{maximize}}_{\left\{ \boldsymbol{\theta}, \boldsymbol{\lambda}, \{\boldsymbol{p}_{k}\}_{k} \right\} } & \mathfrak{L} \left[ \boldsymbol{\theta}, \boldsymbol{\lambda}, \{\boldsymbol{p}_{k}\}_{k} \right] \\ \mbox{s.t.} & \displaystyle \sum\limits_{k=1}^{|{\mathcal E}(\boldsymbol{\theta}, \boldsymbol{x})| } \lambda_{k} = 1, \\ & \boldsymbol{p}_{k} = \boldsymbol{\Psi}( \boldsymbol{p}_{k}, \boldsymbol{x}; \boldsymbol{\theta}), \quad k = 1, \ldots, |{\mathcal E}(\boldsymbol{\theta}, \boldsymbol{x})|. \end{array}$$
(27)

Notice the constrained optimization problem formulated above is not computable because the number of constraints, \(|{\mathcal E}(\boldsymbol {\theta }, \boldsymbol {x})|\), in Eq. 27 depends on the values of decision variables 𝜃. Nonetheless, we can characterize the equivalence in objective value of the two problems (10) and (27) in the following proposition.

Proposition 2

Let \((\bar {\boldsymbol {\theta }}, \bar {\boldsymbol {\lambda }}(\bar {\boldsymbol {\theta }}))\) be a solution of the ML estimation problem defined in Eq10 with corresponding equilibrium probabilities \(\{\bar {\boldsymbol {p}}_{k}(\bar {\boldsymbol {\theta }})\}_{k=1}^{|{\mathcal E}(\bar {\boldsymbol {\theta }}, \boldsymbol {x})|}\). Let \((\boldsymbol {\theta }^{*}, \boldsymbol {\lambda }^{*}, \{\boldsymbol {p}^{*}_{k}\}_{k=1}^{|{\mathcal E}(\theta ^{*}, \boldsymbol {x})|})\) be a solution of the constrained optimization problem (27). Then \(\mathbb {L}[ \bar {\boldsymbol {\theta }}, \bar {\boldsymbol {\lambda }}(\bar {\boldsymbol {\theta }}), \{ \bar {\boldsymbol {p}}_{k}(\bar {\boldsymbol {\theta }}) \}_{k}]=\mathfrak {L} \left [ \boldsymbol {\theta }^{*}, \boldsymbol {\lambda }^{*}, \{\boldsymbol {p}^{*}_{k}\}_{k} \right ] \). If the model is identified, then \(\bar {\boldsymbol {\theta }} = \boldsymbol {\theta }^{*}\).

Proof

By definition, \(\mathbb {L}[ \bar {\boldsymbol {\theta }}, \bar {\boldsymbol {\lambda }}(\bar {\boldsymbol {\theta }}), \{ \bar {\boldsymbol {p}}_{k}(\bar {\boldsymbol {\theta }}) \}_{k}] \geq \mathbb {L}[ \boldsymbol {\theta }, \boldsymbol {\lambda }(\boldsymbol {\theta }), \{ \bar {\boldsymbol {p}}_{k}(\boldsymbol {\theta }) \}_{k}]\) for any given 𝜃, λ(𝜃) and \(\{ \bar {\boldsymbol {p}}_{k}(\boldsymbol {\theta })\}_{k}\) that satisfy the BN equilibrium equation p = Ψ(p, x, 𝜃). Since the pair \((\boldsymbol {\theta }^{*}, \{\boldsymbol {p}^{*}_{k}\}_{k=1}^{|{\mathcal E}(\theta ^{*}, \boldsymbol {x})|})\) satisfies the BN equation as the constraints in Eq. 27, it follows that

$$\mathbb{L}[ \bar{\boldsymbol{\theta}}, \bar{\boldsymbol{\lambda}}(\bar{\boldsymbol{\theta}}), \{ \bar{\boldsymbol{p}}_{k}(\bar{\boldsymbol{\theta}}) \}_{k}]] \geq \mathbb{L} \left[ \boldsymbol{\theta}^{*}, \boldsymbol{\lambda}^{*}, \{\boldsymbol{p}^{*}_{k}\}_{k} \right] = \mathfrak{L} \left[ \boldsymbol{\theta}^{*}, \boldsymbol{\lambda}^{*}, \{\boldsymbol{p}^{*}_{k}\}_{k} \right].$$

Conversely, since the tuple \((\bar {\boldsymbol {\theta }}, \bar {\boldsymbol {\lambda }}(\bar {\boldsymbol {\theta }}), \{\bar {\boldsymbol {p}}_{k}(\bar {\boldsymbol {\theta }})\}_{k=1}^{|{\mathcal E}(\bar {\boldsymbol {\theta }}, \boldsymbol {x})|})\) satisfies the constraints in Eq. 27, we have

$$\mathfrak{L} \left[ \boldsymbol{\theta}^{*}, \boldsymbol{\lambda}^{*}, \{\boldsymbol{p}^{*}_{k}\}_{k} \right] \geq \mathfrak{L}[ \bar{\boldsymbol{\theta}}, \bar{\boldsymbol{\lambda}}(\bar{\boldsymbol{\theta}}), \{ \bar{\boldsymbol{p}}_{k}(\bar{\boldsymbol{\theta}}) \}_{k}] = \mathbb{L}[ \bar{\boldsymbol{\theta}}, \bar{\boldsymbol{\lambda}}(\bar{\boldsymbol{\theta}}), \{ \bar{\boldsymbol{p}}_{k}(\bar{\boldsymbol{\theta}}) \}_{k}].$$

If the model is identified, the solution is unique, so \(\bar {\boldsymbol {\theta }} = \boldsymbol {\theta }^{*}\).

Assuming only one equilibrium is played in the data, only one component in λ is 1 and all the others are 0. Then the constrained optimization problem (27) is equivalent to

$$\begin{array}{ll} \displaystyle \mathop{\text{maximize}}_{\left\{ \boldsymbol{\theta}, \{\boldsymbol{p}_{k}\}_{k} \right\} } & \displaystyle \max_{k = 1, \ldots, |{\mathcal E}(\boldsymbol{\theta}, \boldsymbol{x})|} \left[ \sum\limits_{t=1}^{T} \log \left\{ (p_{ka})^{{y_{a}^{t}}} \left(1 - p_{ka} \right)^{1- {y_{a}^{t}}} (p_{kb})^{{y_{b}^{t}}} \left(1 - p_{kb}\right)^{1- {y_{b}^{t}}} \right\} \right] \\ \mbox{s.t.} & \boldsymbol{p}_{k} = \boldsymbol{\Psi}( \boldsymbol{p}_{k}, \boldsymbol{x}; \boldsymbol{\theta}), \quad k = 1, \ldots, |{\mathcal E}(\boldsymbol{\theta}, \boldsymbol{x})|. \end{array}$$
(28)

Notice that the constrained optimization problem formulated in Eq. 28 is also not computable because its size (the number of constraints, \(|{\mathcal E}(\boldsymbol {\theta }, \boldsymbol {x})|\) and decision variables {p k } k ) depend on the values of decision variables 𝜃; it also involves finding all the equilibrium solutions \(\{ {\boldsymbol {p}_{k}} \}_{k =1}^{|{\mathcal E}(\boldsymbol {\theta }, \boldsymbol {x})|}\) at any given 𝜃. We present a computationally tractable reformulation of the problem (28) as follows:

$$\begin{array}{ll} \displaystyle \mathop{\text{maximize}}_{\left\{ \boldsymbol{\theta}, \boldsymbol{p} \right\} } & \displaystyle \sum\limits_{t=1}^{T} \log \left\{ (p_{a})^{{y_{a}^{t}}} \left(1 - p_{a} \right)^{1- {y_{a}^{t}}} (p_{b})^{{y_{b}^{t}}} \left(1 - p_{b}\right)^{1- {y_{b}^{t}}} \right\} \\ \mbox{s.t.} & \boldsymbol{p} = \boldsymbol{\Psi}( \boldsymbol{p}, \boldsymbol{x}; \boldsymbol{\theta}). \end{array}$$
(29)

Notice that the size (number of decision variables and constraints) of the problem (29) is fixed and does not depend on the value of 𝜃. Moreover, we do not need to find all equilibria at any given 𝜃; only one equilibrium p is needed since only one equilibrium constraint is imposed. The equivalence in the objective value and solutions between the problems (28) and (29) is stated below. We omit the proof since it follows similar arguments used in proving Proposition 2.

Proposition 3

Let \(\left ( \boldsymbol {\theta }^{*}, \{\boldsymbol {p}^{*}_{k}\}_{k=1}^{|{\mathcal E}(\boldsymbol {\theta }^{*}, \boldsymbol {x})|} \right )\) denote the solution to the optimization problem (28) with \(\boldsymbol {p}^{*}_{\bar {k}} \in \{\boldsymbol {p}^{*}_{k}\}_{k} \) being the equilibrium that maximizes the objective function, i.e.,

$$\bar{k} = \displaystyle \mathop{\text{argmax}}_{k = 1, \ldots, |{\mathcal E}(\boldsymbol{\theta}, \boldsymbol{x})|} \left[ \sum\limits_{t=1}^{T} \log \left\{ (p^{*}_{ka})^{{y_{a}^{t}}} \left(1 - p^{*}_{ka} \right)^{1- {y_{a}^{t}}} (p^{*}_{kb})^{{y_{b}^{t}}} \left(1 - p^{*}_{kb} \right)^{1- {y_{b}^{t}}} \right\} \right].$$

Then, the vector \(\left ( \boldsymbol {\theta }^{*}, \boldsymbol {p}^{*}_{\bar {k}} \right )\) is also an optimal solution to the optimization problem (29). Conversely, let \(\left ( \boldsymbol {\hat {\theta }}, \boldsymbol {\hat {p}} \right )\) denote a solution of the problem (29). Then the pair \(\left ( \boldsymbol {\hat {\theta }}, \boldsymbol {\hat {p}} \right )\) together with all the other equilibrium probabilities \(\{\boldsymbol {p}_{k}\}_{k} \setminus \boldsymbol {\hat {p}} \) at \(\boldsymbol {\hat {\theta }}\) is an solution to the problem (28).

Finally, the formulation in Eq. 29 can be generalized to the constrained optimization problem for the ML estimator defined in Eq. 18 for the case of observing data in multiple markets.

Appendix B: Creating examples with multiple equilibria

In this appendix, we derive the formula for calculating the spectral radius ρ[∇ P Ψ(P, X;𝜃)] for the model in Section 5. We first derive the formula for calculating the spectral radius for one market and then generalize the formula to the case with multiple markets. Recall that in Section 5, for m = 1, …, M, we have

$$\begin{array}{rcl} {p_{W}^{m}} & = & \displaystyle \frac{ \text{exp}( \boldsymbol{\alpha}^{\prime} \boldsymbol{x}^{m} + \boldsymbol{\beta}_{W}^{\prime} \boldsymbol{x}^{m}_{W} - \delta {p_{K}^{m}} ) }{ 1 + \text{exp}( \boldsymbol{\alpha}^{\prime} \boldsymbol{x}^{m} + \boldsymbol{\beta}_{W}^{\prime} \boldsymbol{x}^{m}_{W} - \delta {p_{K}^{m}} ) } = \Psi_{W}( \boldsymbol{x}^{m}, \boldsymbol{x}_{W}^{m}, {p^{m}_{K}}; \boldsymbol{\theta}) \\ {p_{K}^{m}} & = &\displaystyle \frac{ \text{exp}( \boldsymbol{\alpha}^{\prime} \boldsymbol{x}^{m} + \boldsymbol{\beta}_{K}^{\prime} \boldsymbol{x}^{m}_{K} - \delta {p_{W}^{m}} ) }{ 1 + \text{exp}( \boldsymbol{\alpha}^{\prime} \boldsymbol{x}^{m} + \boldsymbol{\beta}_{K}^{\prime} \boldsymbol{x}^{m}_{K} - \delta {p_{W}^{m}} ) } = \Psi_{K}( \boldsymbol{x}^{m}, \boldsymbol{x}_{K}^{m}, {p^{m}_{W}}; \boldsymbol{\theta}), \end{array}$$

We represent the BN equilibrium equations above for market m as

$$\boldsymbol{p}^{m} = \boldsymbol{\Psi}( \boldsymbol{p}^{m}, \boldsymbol{X}^{m}; \boldsymbol{\theta}), $$

where \(\boldsymbol {p}^{m} = ({p_{W}^{m}}, {p_{K}^{m}})\), Ψ = (Ψ W , Ψ K ), and \(\boldsymbol {X}^{m} = (\boldsymbol {x}^{m}, \boldsymbol {x}_{W}^{m}, \boldsymbol {x}_{K}^{m} )\). The Jacobian of the mapping Ψ(p m, X m;𝜃) with respect to p m is

$$\nabla_{\boldsymbol{p}^{m}} \boldsymbol{\Psi}( \boldsymbol{p}^{m}, \boldsymbol{X}^{m}; \boldsymbol{\theta}) = \left[\begin{array}{cc} \frac{\partial \Psi_{W}}{\partial {p_{W}^{m}}} & \frac{\partial \Psi_{W}}{\partial {p_{K}^{m}}} \\ \frac{\partial \Psi_{K}}{\partial {p_{W}^{m}}} & \frac{\partial \Psi_{K}}{\partial {p_{K}^{m}}} \end{array}\right] = \left[\begin{array}{cc} 0 & {p_{W}^{m}}(1-{p_{W}^{m}}) \delta \\ {p_{K}^{m}}(1-{p_{K}^{m}}) \delta & 0 \end{array}\right].$$

The eigenvalues λ m of \(\nabla _{\boldsymbol {p}^{m}} \boldsymbol {\Psi }( \boldsymbol {p}^{m}, \boldsymbol {X}^{m}; \boldsymbol {\theta })\) satisfy the following conditions:

$$\text{det} \left(\nabla_{\boldsymbol{p}^{m}} \boldsymbol{\Psi}( \boldsymbol{p}^{m}, \boldsymbol{X}^{m}; \boldsymbol{\theta}) - \lambda^{m} I \right) = (\lambda^{m})^{2} - {p_{W}^{m}}(1-{p_{W}^{m}}) {p_{K}^{m}} (1-{p_{K}^{m}}) \delta^{2} = 0, $$

where I is the identity matrix. Hence, we have

$$\lambda^{m} = \pm \delta \sqrt{{p_{W}^{m}}(1-{p_{W}^{m}}) {p_{K}^{m}} (1-{p_{K}^{m}})}.$$

The spectral radius of the Jacobian mapping \(\nabla _{\boldsymbol {p}^{m}} \boldsymbol {\Psi }( \boldsymbol {p}^{m}, \boldsymbol {X}^{m}; \boldsymbol {\theta })\) for market m is then

$$\rho[\nabla_{\boldsymbol{p}^{m}} \boldsymbol{\Psi}( \boldsymbol{p}^{m}, \boldsymbol{X}^{m}; \boldsymbol{\theta})] = \max |\lambda^{m}| = | \delta | \sqrt{{p_{W}^{m}}(1-{p_{W}^{m}}) {p_{K}^{m}} (1-{p_{K}^{m}})}.$$

Next we generalize the derivation above to the case with multiple markets. Recall we represent the BN equilibrium equations for all markets m = 1, …, M as

$$\boldsymbol{P} = \boldsymbol{\Psi}( \boldsymbol{P}, \boldsymbol{X}; \boldsymbol{\theta}), $$

where \(\boldsymbol {P} = ({p^{m}_{W}}, {p^{m}_{K}})_{m = 1}^{M}\), Ψ = (Ψ W , Ψ K ) and \(\boldsymbol {X} = (\boldsymbol {x}^{m}, \boldsymbol {x}_{W}^{m}, \boldsymbol {x}_{K}^{m} )_{m=1}^{M}\). Observe that the Jacobian matrix ∇ P Ψ(P, X;𝜃) has the block-diagonal structure

$$\nabla_{\boldsymbol{P}} \boldsymbol{\Psi}( \boldsymbol{P}, \boldsymbol{X}; \boldsymbol{\theta}) \, =\, \begin{bmatrix} \nabla_{\boldsymbol{p}^{1}} \boldsymbol{\Psi}( \boldsymbol{p}^{1}, \boldsymbol{X}^{1}; \boldsymbol{\theta}) & 0 & \cdots & 0 \\ 0 & \nabla_{\boldsymbol{p}^{2}} \boldsymbol{\Psi}( \boldsymbol{p}^{2}, \boldsymbol{X}^{2}; \boldsymbol{\theta}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \nabla_{\boldsymbol{p}^{M}} \boldsymbol{\Psi}( \boldsymbol{p}^{M}, \boldsymbol{X}^{M}; \boldsymbol{\theta}) \end{bmatrix}.$$

Consequently, the spectral radius of the Jacobian mapping ∇ P Ψ(P, X;𝜃) is given as

$$\rho[\nabla_{\boldsymbol{P}} \boldsymbol{\Psi}( \boldsymbol{P}, \boldsymbol{X}; \boldsymbol{\theta})] = \max_{m = 1, \ldots, M} | \lambda^{m} | = \max_{m = 1, \ldots, M} \left\{ | \delta | \sqrt{{p_{W}^{m}}(1-{p_{W}^{m}}) {p_{K}^{m}} (1-{p_{K}^{m}})} \right\}.$$

To create an example with multiple equilibria in some markets, we need the spectral radius ρ[∇ P Ψ(P , X;𝜃 0)] evaluated at structural parameters 𝜃 0 and the corresponding equilibrium P to be greater than 1, which implies \(| \delta ^{0} | \sqrt {{p_{W}^{m}}(1-{p_{W}^{m}}) {p_{K}^{m}} (1-{p_{K}^{m}})} > 1 \) for some m. This, in turns, requires that

$$|\delta^{0}| > 4, $$

since \(\sqrt {{p_{W}^{m}}(1-{p_{W}^{m}}) {p_{K}^{m}} (1-{p_{K}^{m}})} < 1/4\). As a conservative choice, we choose δ 0 = 6 in the second set of true parameter values in Eq. 25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, CL. Estimating discrete-choice games of incomplete information: Simple static examples. Quant Mark Econ 12, 167–207 (2014). https://doi.org/10.1007/s11129-014-9144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11129-014-9144-8

Keywords

JEL Classification

Navigation