Skip to main content
Log in

Partial distinguishability as a coherence resource in boson sampling

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum coherence is a useful resource that is consumed to accomplish several tasks that classical devices are hard to fulfill. Particularly, it is considered to be the origin of quantum speedup for many computational algorithms. In this work, we interpret the computational time cost of boson sampling with partially distinguishable photons from the perspective of coherence resource theory. With incoherent operations that preserve the diagonal elements of quantum states up to permutation, which we name permuted genuinely incoherent operation, we present some evidence that the decrease of coherence corresponds to a computationally less complex system of partially distinguishable boson sampling. Our result shows that coherence is one of crucial resources for the computational time cost of boson sampling. We expect our work presents an insight to understand the quantum complexity of the linear optical network system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Other crucial classes of incoherent operations are physical incoherent operations (PIO) [29, 30], dephasing-covariant incoherent operations (DIO) [29, 30], and translationally-invariant operations (TIO) [31,32,33,34].

  2. The speakable resources are independent of the physical encoding, i.e., all basis are equivalent, while the unspeakable depend on the specific degrees of freedom. For a more detailed explanation, see Ref. [15, 32].

  3. This can be compared to the coherence theory of wave–particle duality in multi-slit experiments [21,22,23, 41]. These researches showed that the interference phenomena (wave-like property) of a quanton through a multi-slit path increases as the degree of coherence increase, which is analogous to our case with multimode linear optical network.

References

  1. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, pp. 333–342. ACM (2011)

  2. Töppel, F., Aiello, A., Leuchs, G.: All photons are equal but some photons are more equal than others. N. J. Phys. 14(9), 093051 (2012)

    Google Scholar 

  3. Tan, S.-H., Gao, Y.Y., de Guise, H., Sanders, B.C.: Su (3) quantum interferometry with single-photon input pulses. Phys. Rev. Lett. 110(11), 113603 (2013)

    ADS  Google Scholar 

  4. Tillmann, M., Tan, S.-H., Stoeckl, S.E., Sanders, B.C., de Guise, H., Heilmann, R., Nolte, S., Szameit, A., Walther, P.: Generalized multiphoton quantum interference. Phys. Rev. X 5(4), 041015 (2015)

    Google Scholar 

  5. de Guise, H., Tan, S.-H., Poulin, I.P., Sanders, B.C.: Coincidence landscapes for three-channel linear optical networks. Phys. Rev. A 89(6), 063819 (2014)

    ADS  Google Scholar 

  6. Rohde, P.P.: Boson sampling with photons of arbitrary spectral structure. Phys. Rev. A 91(1), 012307 (2015)

    ADS  MathSciNet  Google Scholar 

  7. Tamma, V., Laibacher, S.: Multiboson correlation interferometry with multimode thermal sources. Phys. Rev. A 90(6), 063836 (2014)

    ADS  Google Scholar 

  8. Tamma, V.: Sampling of bosonic qubits. Int. J. Quantum Inf. 12(07n08), 1560017 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Shchesnovich, V.S.: Sufficient condition for the mode mismatch of single photons for scalability of the boson-sampling computer. Phys. Rev. A 89(2), 022333 (2014)

    ADS  Google Scholar 

  10. Shchesnovich, V.S.: Partial indistinguishability theory for multiphoton experiments in multiport devices. Phys. Rev. A 91(1), 013844 (2015)

    ADS  MathSciNet  Google Scholar 

  11. Tichy, M.C.: Sampling of partially distinguishable bosons and the relation to the multidimensional permanent. Phys. Rev. A 91(2), 022316 (2015)

    ADS  MathSciNet  Google Scholar 

  12. Renema, J.J., Menssen, A., Clements, W.R., Triginer, G., Kolthammer, W.S., Walmsley, I.A.: Efficient classical algorithm for boson sampling with partially distinguishable photons. Phys. Rev. Lett. 120, 220502 (2018)

    ADS  Google Scholar 

  13. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    ADS  Google Scholar 

  14. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89(4), 041003 (2017)

    ADS  MathSciNet  Google Scholar 

  15. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91(2), 025001 (2019)

    ADS  MathSciNet  Google Scholar 

  16. de Vicente, J.I., Streltsov, A.: Genuine quantum coherence. J. Phys. A Math. Theor. 50(4), 045301 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Yadin, B., Ma, J., Girolami, D., Mile, G., Vedral, V.: Quantum processes which do not use coherence. Phys. Rev. X 6(4), 041028 (2016)

    Google Scholar 

  18. Yung, M.-H., Gao, X., Huh, J.: Universal bound on sampling bosons in linear optics and its computational implications. Natl. Sci. Rev. 6(4), 719–729 (2019)

    Google Scholar 

  19. Chin, S., Huh, J.: Majorization and the time complexity of linear optical networks. J. Phys. A Math. Theor. 52(24), 245301 (2019)

    ADS  MathSciNet  Google Scholar 

  20. Chin, S., Huh, J.: Generalized concurrence in boson sampling. Sci. Rep. 8, 6101 (2018)

    ADS  Google Scholar 

  21. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92(1), 012118 (2015)

    ADS  Google Scholar 

  22. Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116(16), 160406 (2016)

    ADS  Google Scholar 

  23. Chin, S.: Generalized coherence concurrence and path distinguishability. J. Phys. A Math. Theor. 50(47), 475302 (2017)

    ADS  MathSciNet  Google Scholar 

  24. Aberg, J.: Quantifying superposition. arXiv:quant-ph/0612146 (2006)

  25. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116(12), 120404 (2016)

    ADS  Google Scholar 

  26. Hillery, M.: Coherence as a resource in decision problems: the Deutsch–Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)

    ADS  Google Scholar 

  27. Shi, H.-L., Liu, S.-Y., Wang, X.-H., Yang, W.-L., Yang, Z.-Y., Fan, H.: Coherence depletion in the grover quantum search algorithm. Phys. Rev. A 95, 032307 (2017)

    ADS  MathSciNet  Google Scholar 

  28. Chin, S.: Coherence number as a discrete quantum resource. Phys. Rev. A 96(4), 042336 (2017)

    ADS  Google Scholar 

  29. Chitambar, E., Gour, G.: Comparison of incoherent operations and measures of coherence. Phys. Rev. A 94(5), 052336 (2016)

    ADS  Google Scholar 

  30. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117(3), 030401 (2016)

    ADS  Google Scholar 

  31. Gour, G., Marvian, I., Spekkens, R.W.: Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80(1), 012307 (2009)

    ADS  Google Scholar 

  32. Marvian, I., Spekkens, R.W.: How to quantify coherence: distinguishing speakable and unspeakable notions. Phys. Rev. A 94(5), 052324 (2016)

    ADS  Google Scholar 

  33. Marvian, I., Spekkens, R.W.: Extending Noether’s theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5, 3821 (2014)

    ADS  Google Scholar 

  34. Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93(5), 052331 (2016)

    ADS  Google Scholar 

  35. Mandel, L.: Coherence and indistinguishability. Opt. Lett. 16(23), 1882–1883 (1991)

    ADS  Google Scholar 

  36. Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. N. J. Phys. 15(3), 033001 (2013)

    Google Scholar 

  37. Walschaers, M., Kuipers, J., Buchleitner, A.: From many-particle interference to correlation spectroscopy. Phys. Rev. A 94(2), 020104 (2016)

    ADS  Google Scholar 

  38. Brünner, T., Dufour, G., Rodríguez, A., Buchleitner, A.: Signatures of indistinguishability in bosonic many-body dynamics. Phys. Rev. Lett. 120(21), 210401 (2018)

    ADS  Google Scholar 

  39. Lloyd, S.: Quantum search without entanglement. Phys. Rev. A 61(1), 010301 (1999)

    MathSciNet  Google Scholar 

  40. Stahlke, D.: Quantum interference as a resource for quantum speedup. Phys. Rev. A 90(2), 022302 (2014)

    ADS  Google Scholar 

  41. Biswas, T., Díaz, M.G., Winter, A.: Interferometric visibility and coherence. Proc. R. Soc. A Math. Phys. Eng. Sci. 473(2203), 20170170 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Ryser, H.J.: Combinatorial Mathematics. The Carus Mathematical Monographs, vol. 14. Wiley, New York (1963)

    MATH  Google Scholar 

  43. Bai, Z., Du, S.: Maximally coherent states. arXiv:1503.07103 (2015)

  44. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51(4), 671–697 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Lund, A.P., Laing, A., Rahimi-Keshari, S., Rudolph, T., O’Brien, J.L., Ralph, T.C.: Boson sampling from a Gaussian state. Phys. Rev. Lett. 113(10), 100502 (2014)

    ADS  Google Scholar 

  46. Rahimi-Keshari, S., Lund, A.P., Ralph, T.C.: What can quantum optics say about computational complexity theory? Phys. Rev. Lett. 114, 060501 (2015)

    ADS  Google Scholar 

  47. Rahimi-Keshari, S., Ralph, T.C., Caves, C.M.: Sufficient conditions for efficient classical simulation of quantum optics. Phys. Rev. X 6(2), 021039 (2016)

    Google Scholar 

  48. Huh, J., Yung, M.-H.: Vibronic boson sampling: generalized Gaussian boson sampling for molecular vibronic spectra at finite temperature. Sci. Rep. 7(1), 7462 (2017)

    ADS  Google Scholar 

  49. Hamilton, C.S., Kruse, R., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.: Gaussian boson sampling. Phys. Rev. Lett. 119(17), 170501 (2017)

    ADS  Google Scholar 

  50. Gurvits, L., Samorodnitsky, A.: Bounds on the permanent and some applications. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), pp. 90–99. IEEE (2014)

Download references

Acknowledgements

Jelmer Renema presented some heplful comments while amending this work. S.C. is grateful to Prof. Jung-Hoon Chun for his support. S.C. is supported through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A1A01059964). J.H is suppored through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1A6A3A04059773, NRF-2019M3E4A1080227, NRF-2019M3E4A1079666), and POSCO Science Fellowship of POSCO TJ Park Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungbeom Chin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Seungbeom Chin and Joonsuk Huh are contributed equally to this work.

Appendices

The upper bound of transition probability with \({\text {perm}}(|{\mathcal {S}}|)\)

A slight modification of Eq. (51) in Ref. [11] gives

$$\begin{aligned} P({\vec {n}},{\vec {m}})&= \Big |\sum _{\sigma \in S_N }{\text {perm}}(V\odot V^*_{\sigma , \mathbb {I}})\Big (\prod _i {\mathcal {S}}_{i, \sigma _i} \Big )\Big | \nonumber \\&\le {\text {perm}}(V\odot V^*)\sum _{\sigma \in S_N}\Big | \prod _i {\mathcal {S}}_{i,\sigma _i}\Big | \equiv P_\mathbb {I}[{\text {perm}}(|{\mathcal {S}}|)]. \end{aligned}$$
(15)

where the inequality comes from the relation \(\big |{\text {perm}}(V\odot V^*_{\mathbb {I},\sigma } ) \big | \le {\text {perm}}(V\odot V^*)\equiv P_{\mathbb {I}}\) for any permutation \(\sigma \). Using the monotonicity of \({\text {perm}}(|{\mathcal {S}}|)\) from Theorem 3, we can see that a pGIO on \({\mathcal {S}}\) decreases the upper bound of the transition probability \(P({\vec {n}},{\vec {m}})\). The unitarity condition of V in Eq. (15) provides a more rigorous upper bound condition for the equation. Indeed, since \(V\odot V^*\) is a unistochastic matrix (a doubly stochastic matrix whose elements are the absolute squares of the elements of a unitary matrix), the upper and lower bounds for \(P_{\mathbb {I}} = {\text {perm}}(V\odot V^*)\) are given using the result in Ref. [50] by

$$\begin{aligned} F(V\odot V^*) \le {\text {perm}}(V\odot V^*) \le 2^NF(V\odot V^*) , \end{aligned}$$
(16)

where \(F(V\odot V^*) \equiv \prod _{i,j=1}^N(1-|V_{ij}|^2)^{1-|V_{ij}|^2 }\). Hence, Eq. (15) can be rewritten as

$$\begin{aligned} P({\vec {n}},{\vec {m}}) \le 2^N F(V\odot V^*)[{\text {perm}}(|{\mathcal {S}}|)]. \end{aligned}$$
(17)

Alternative algorithm example

(\(N=4\)) The runtime using Eq. (12) is \((2^{6}4^3)/2=2048\). However, when \(S_{13}=S_{24}=S_{34}=0\), the summations with the following (RS) become zero:

$$\begin{aligned} (R,S)=(\{1\}, \{3 \}),\quad (\{2\}, \{4 \}), (\{3\}, \{4 \}),\quad (\{3\}, \{1,4 \}), \quad (\{4\}, \{2,3 \}), \end{aligned}$$
(18)

which contains 4, 4, 8, and 8 terms, respectively. Therefore, the resulting runtime decreases to 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, S., Huh, J. Partial distinguishability as a coherence resource in boson sampling. Quantum Inf Process 19, 37 (2020). https://doi.org/10.1007/s11128-019-2525-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2525-x

Keywords

Navigation