Skip to main content
Log in

Ion trap architectures and new directions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Trapped ion technology has seen advances in performance, robustness and versatility over the last decade. With increasing numbers of trapped ion groups worldwide, a myriad of trap architectures are currently in use. Applications of trapped ions include: quantum simulation, computing and networking, time standards and fundamental studies in quantum dynamics. Design of such traps is driven by these various research aims, but some universally desirable properties have lead to the development of ion trap foundries. Additionally, the excellent control achievable with trapped ions and the ability to do photonic readout has allowed progress on quantum networking using entanglement between remotely situated ion-based nodes. Here, we present a selection of trap architectures currently in use by the community and present their most salient characteristics, identifying features particularly suited for quantum networking. We also discuss our own in-house research efforts aimed at long-distance trapped ion networking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Paul, W.: Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990)

    Article  ADS  Google Scholar 

  2. Dehmelt, H.G.: Radiofrequency spectroscopy of stored ions I: storage. Adv. At. Mol. Phys. 3, 53 (1967)

    Article  ADS  Google Scholar 

  3. Bollinger, J.J., Heizen, D.J., Itano, W.M., Gilbert, S.L., Wineland, D.J.: A 303-MHz frequency standard based on trapped \(\text{ Be }^+\) ions. IEEE Trans. Instrum. Meas. 40(2), 126–128 (1991)

    Article  Google Scholar 

  4. Fisk, P.T.H., Sellars, M.J., Lawn, M.A., Coles, C.: Accurate measurement of the 12.6 GHz “clock” transition in trapped \(^{171}\text{ Yb }^+\) ions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(2), 344–354 (1997)

    Article  Google Scholar 

  5. Rosenband, T., Hume, D.B., Schmidt, P.O., Chou, C.W., Brusch, A., Lorini, L., Oskay, W.H., Drullinger, R.E., Fortier, T.M., Stalnaker, J.E., Diddams, S.A., Swann, W.C., Newbury, N.R., Itano, W.M., Wineland, D.J., Bergquist, J.C.: Frequency ratio of al\(^{+}\) and hg\(^{+}\) single-ion optical clocks; metrology at the 17th decimal place. Science 319(5871), 1808–1812 (2008)

    Article  ADS  Google Scholar 

  6. Huntemann, N., Sanner, C., Lipphardt, B., Tamm, C., Peik, E.: Single-ion atomic clock with \(3\times {10}^{-18}\) systematic uncertainty. Phys. Rev. Lett. 116, 063001 (2016)

    Article  ADS  Google Scholar 

  7. Keller, J., Burgermeister, T., Kalincev, D., Kiethe, J., Mehlstäubler, T.E.: Evaluation of trap-induced systematic frequency shifts for a multi-ion optical clock at the \(10^{-19}\) level. J. Phys. Conf. Ser. 723(1), 012027 (2016)

    Article  Google Scholar 

  8. Chou, C.W., Hume, D.B., Rosenband, T., Wineland, D.J.: Optical clocks and relativity. Science 329(5999), 1630–1633 (2010)

    Article  ADS  Google Scholar 

  9. Schwartz, J.C., Senko, M.W., Syka, J.E.P.: A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13(6), 659–669 (2002)

    Article  Google Scholar 

  10. Keller, M., Lange, B., Hayasaka, K., Lange, W., Walther, H.: Deterministic cavity quantum electrodynamics with trapped ions. J. Phys. B At. Mol. Opt. Phys. 36(3), 613 (2003)

    Article  ADS  Google Scholar 

  11. Kreuter, A., Becher, C., Lancaster, G.P.T., Mundt, A.B., Russo, C., Häffner, H., Roos, C., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Spontaneous emission lifetime of a single trapped \({\text{ Ca }}^{+}\) ion in a high finesse cavity. Phys. Rev. Lett. 92, 203002 (2004)

    Article  ADS  Google Scholar 

  12. Barros, H.G., Stute, A., Northup, T.E., Russo, C., Schmidt, P.O., Blatt, R.: Deterministic single-photon source from a single ion. New J. Phys. 11(10), 103004 (2009)

    Article  ADS  Google Scholar 

  13. Takahashi, H., Wilson, A., Riley-Watson, A., Oruc̆ević, F., Seymour-Smith, N., Keller, M., Lange, W.: An integrated fiber trap for single-ion photonics. New J. Phys. 15(5), 053011 (2013)

    Article  ADS  Google Scholar 

  14. Odom, B., Hanneke, D., D’Urso, B., Gabrielse, G.: New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 97, 030801 (2006)

    Article  ADS  Google Scholar 

  15. Porras, D., Cirac, J.I.: Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004)

    Article  ADS  Google Scholar 

  16. Porras, D., Cirac, J.I.: Quantum manipulation of trapped ions in two dimensional coulomb crystals. Phys. Rev. Lett. 96, 250501 (2006)

    Article  ADS  Google Scholar 

  17. Islam, R., Senko, C., Campbell, W.C., Korenblit, S., Smith, J., Lee, A., Edwards, E.E., Wang, C.-C.J., Freericks, J.K., Monroe, C.: Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340(6132), 583–587 (2013)

    Article  ADS  Google Scholar 

  18. Schindler, P., Muller, M., Nigg, D., Barreiro, J.T., Martinez, E.A., Hennrich, M., Monz, T., Diehl, S., Zoller, P., Blatt, R.: Quantum simulation of dynamical maps with trapped ions. Nat. Phys. 9(6), 361–367 (2013). Article

    Article  Google Scholar 

  19. Zhang, J., Hess, P.W., Kyprianidis, A., Becker, P., Lee, A., Smith, J., Pagano, G., Potirniche, I.-D., Potter, A.C., Vishwanath, A., Yao, N.Y., Monroe, C.: Observation of a discrete time crystal. Nature 543(7644), 217–220 (2017). Letter

    Article  ADS  Google Scholar 

  20. Neyenhuis, B., Smith, J., Lee, A.C., Zhang, J., Richerme, P., Hess, P.W., Gong, Z.-X., Gorshkov, A.V., Monroe, C.: Observation of prethermalization in long-range interacting spin chains. arXiv:1608.00681 (2016)

  21. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  ADS  Google Scholar 

  22. Milburn, G.J., Schneider, S., James, D.F.V.: Ion trap quantum computing with warm ions. Fortschr. Phys. 48(9–11), 801–810 (2000)

    Article  Google Scholar 

  23. Sørensen, A., Mølmer, K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000)

    Article  ADS  Google Scholar 

  24. Duan, L.-M.: Scaling ion trap quantum computation through fast quantum gates. Phys. Rev. Lett. 93, 100502 (2004)

    Article  ADS  Google Scholar 

  25. Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E., Meekhof, D.M.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Nat. Inst. Stand. Technol. 103, 259 (1998)

    Article  MATH  Google Scholar 

  26. Debnath, S., Linke, N.M., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Demonstration of a small programmable quantum computer with atomic qubits. Nature 536(7614), 63–66 (2016)

    Article  ADS  Google Scholar 

  27. Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., Maunz, P., Duan, L.-M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014)

    Article  ADS  Google Scholar 

  28. Olmschenk, S., Younge, K.C., Moehring, D.L., Matsukevich, D.N., Maunz, P., Monroe, C.: Manipulation and detection of a trapped \({\text{ Yb }}^{+}\) hyperfine qubit. Phys. Rev. A 76, 052314 (2007)

    Article  ADS  Google Scholar 

  29. Madsen, M.J., Moehring, D.L., Maunz, P., Kohn, R.N., Duan, L.-M., Monroe, C.: Ultrafast coherent excitation of a trapped ion qubit for fast gates and photon frequency qubits. Phys. Rev. Lett. 97, 040505 (2006)

    Article  ADS  Google Scholar 

  30. Mølmer, K., Sørensen, A.: Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999)

    Article  ADS  Google Scholar 

  31. Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature 453(7198), 1008–1015 (2008)

    Article  ADS  Google Scholar 

  32. Eschner, J., Morigi, G., Schmidt-Kaler, F., Blatt, R.: Laser cooling of trapped ions. J. Opt. Soc. Am. B 20(5), 1003–1015 (2003)

    Article  ADS  Google Scholar 

  33. Mintert, F., Wunderlich, C.: Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87, 257904 (2001)

    Article  ADS  Google Scholar 

  34. Lake, K., Weidt, S., Randall, J., Standing, E.D., Webster, S.C., Hensinger, W.K.: Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation. Phys. Rev. A 91, 012319 (2015)

    Article  ADS  Google Scholar 

  35. Hasegawa, T., Bollinger, J.J.: Rotating radio frequency traps. Phys. Rev. A 72, 043403 (2005)

    Article  ADS  Google Scholar 

  36. Duan, L.-M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)

    Article  ADS  Google Scholar 

  37. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  38. Gaebler, J.P., Tan, T.R., Lin, Y., Wan, Y., Bowler, R., Keith, A.C., Glancy, S., Coakley, K., Knill, E., Leibfried, D., Wineland, D.J.: High-fidelity universal gate set for \(^{9}{\text{ Be }}^{+}\) ion qubits. Phys. Rev. Lett. 117, 060505 (2016)

    Article  ADS  Google Scholar 

  39. Ballance, C.J., Harty, T.P., Linke, N.M., Sepiol, M.A., Lucas, D.M.: High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016)

    Article  ADS  Google Scholar 

  40. Moehring, D.L., Highstrete, C., Stick, D., Fortier, K.M., Haltli, R., Tigges, C., Blain, M.G.: Design, fabrication and experimental demonstration of junction surface ion traps. New J. Phys. 13(7), 075018 (2011)

    Article  ADS  Google Scholar 

  41. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417(6890), 709–711 (2002)

    Article  ADS  Google Scholar 

  42. Hensinger, W.K., Olmschenk, S., Stick, D., Hucul, D., Yeo, M., Acton, M., Deslauriers, L., Monroe, C., Rabchuk, J.: T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 88(3), 034101 (2006)

    Article  ADS  Google Scholar 

  43. Schug, M., Huwer, J., Kurz, C., Müller, P., Eschner, J.: Heralded photonic interaction between distant single ions. Phys. Rev. Lett. 110, 213603 (2013)

    Article  ADS  Google Scholar 

  44. Kurz, C., Schug, M., Eich, P., Huwer, J., Müller, P., Eschner, J.: Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer. Nat. Commun. 5, 5527 (2014)

    Article  ADS  Google Scholar 

  45. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008)

    Article  ADS  Google Scholar 

  46. Wootters, W.H., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)

    Article  ADS  MATH  Google Scholar 

  47. Cabrillo, C., Cirac, J.I., García-Fernández, P., Zoller, P.: Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999)

    Article  ADS  Google Scholar 

  48. Hucul, D., Inlek, I.V., Crocker, C., Debnath, S., Clark, S.M., Monroe, C.: Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2015)

    Article  Google Scholar 

  49. Streed, E.W., Norton, B.G., Chapman, J.J., Kielpinski, D.: Scalable efficient ion-photon coupling with phase fresnel lenses for large-scale quantum computing. Quant. Inf. Comput. 9, 0203 (2009)

    Google Scholar 

  50. Siverns, J.D., Li, X., Quraishi, Q.: Ion-photon entanglement and quantum frequency conversion with trapped \({\text{ Ba }}^+\) ions. Appl. Phys. Lett. 56, B222 (2017)

    Google Scholar 

  51. Hughes, M.D., Lekitsch, B., Broersma, J.A., Hensinger, W.K.: Microfabricated ion traps. Contemp. Phys. 52, 505–529 (2011)

    Article  ADS  Google Scholar 

  52. Turchette, Q.A., Kielpinski, D., King, B.E., Leibfried, D., Meekhof, D.M., Myatt, C.J., Rowe, M.A., Sackett, C.A., Wood, C.S., Itano, W.M., Monroe, C., Wineland, D.J., Wineland, D.J.: Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  53. Deslauriers, L., Olmschenk, S., Stick, D., Hensinger, W.K., Sterk, J., Monroe, C.: Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006)

    Article  ADS  Google Scholar 

  54. Hite, D.A., Colombe, Y., Wilson, A.C., Allcock, D.T.C., Leibfried, D., Wineland, D.J., Pappas, D.P.: Surface science for improved ion traps. MRS Bull. 38(10), 826–833 (2013)

    Article  Google Scholar 

  55. McConnell, R., Bruzewicz, C., Chiaverini, J., Sage, J.: Reduction of trapped-ion anomalous heating by in situ surface plasma cleaning. Phys. Rev. A 92, 020302 (2015)

    Article  ADS  Google Scholar 

  56. Allcock, D.T.C., Harty, T.P., Janacek, H.A., Linke, N.M., Ballance, C.J., Steane, A.M., Lucas, D.M., Jarecki, R.L., Habermehl, S.D., Blain, M.G., Stick, D., Moehring, D.L.: Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap. Appl. Phys. B 107(4), 913–919 (2012)

    Article  ADS  Google Scholar 

  57. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323(5913), 486–489 (2009)

    Article  ADS  Google Scholar 

  58. Excelitas Technologies. SPCM-NIR Rev 2015-03. http://www.excelitas.com/downloads/SPCM-NIR_Product_Brief.pdf (2015)

  59. Gaudio, R., Renema, J.J., Zhou, Z., Verma, V.B., Lita, A.E., Shainline, J., Stevens, M.J., Mirin, R.P., Nam, S.W., van Exter, M.P., de Dood, M.J.A., Fiore, A.: Experimental investigation of the detection mechanism in wsi nanowire superconducting single photon detectors. Appl. Phys. Lett. 109(3), 031101 (2016)

    Article  ADS  Google Scholar 

  60. Lamas-Linares, A., Calkins, B., Tomlin, N.A., Gerrits, T., Lita, A.E., Beyer, J., Mirin, R.P., Woo Nam, S.: Nanosecond-scale timing jitter for single photon detection in transition edge sensors. Appl. Phys. Lett. 102(23), 231117 (2013)

    Article  ADS  Google Scholar 

  61. Marsili, F., Verma, V.B., Stern, J.A., Harrington, S., Lita, A.E., Gerrits, T., Vayshenker, I., Baek, B., Shaw, M.D., Mirin, R.P., Nam, S.W.: Detecting single infrared photons with 93. Nat. Photonics 7(3), 210–214 (2013)

    Article  ADS  Google Scholar 

  62. Rath, P., Kahl, O., Ferrari, S., Sproll, F., Lewes-Malandrakis, G., Brink, D., Ilin, K., Siegel, M., Nebel, C., Pernice, W.: Superconducting single-photon detectors integrated with diamond nanophotonic circuits. Light Sci. Appl. 4, e338 (2015). Original Article

    Article  Google Scholar 

  63. Hadfield, R.H.: Single-photon detectors for optical quantum information applications. Nat. Photonics 3(12), 696–705 (2009)

    Article  ADS  Google Scholar 

  64. Yamashita, T., Miki, S., Makise, K., Qiu, W., Terai, H., Fujiwara, M., Sasaki, M., Wang, Z.: Origin of intrinsic dark count in superconducting nanowire single-photon detectors. Appl. Phys. Lett. 99(16), 161105 (2011)

    Article  ADS  Google Scholar 

  65. Vikas, A.: Photon spot inc. http://www.photonspot.com/ (2016). Accessed 2017

  66. Slichter, D.H., Verma, V.B., Liebfried, D., Mirin, R.P., Nam, S.W., Wineland, D.J.: UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap. arXiv:1611.09949 (2016)

  67. Kumar, P.: Quantum frequency conversion. Opt. Lett. 15(24), 1476–1478 (1990)

    Article  ADS  Google Scholar 

  68. Lenhard, A., Brito, J., Bock, M., Becher, C., Eschner, J.: Coherence and entanglement preservation of frequency-converted heralded single photons. Opt. Express 25(10), 11187–11199 (2017)

    Article  ADS  Google Scholar 

  69. Esfandyarpour, V., Langrock, C., Fejer1, M.M.: Cascaded downconversion interface to the telecom band for single-photon-level signals at 650 nm. In: Conference on Lasers and Electro-Optics (2016)

  70. Siverns, J.D., Li, X., Quraishi, Q.: Ion-photon entanglement and quantum frequency conversion with trapped \({Ba}^{+}\) ions. Appl. Opt. 56, B222-B230 (2017)

  71. Zaske, S., Lenhard, A., Keßler, C.A., Kettler, J., Hepp, C., Arend, C., Albrecht, R., Schulz, W.-M., Jetter, M., Michler, P., Becher, C.: Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)

    Article  ADS  Google Scholar 

  72. Madsen, M.J., Hensinger, W.K., Stick, D., Rabchuk, J.A., Monroe, C.: Planar ion trap geometry for microfabrication. Appl. Phys. B 78(5), 639–651 (2004)

    Article  ADS  Google Scholar 

  73. Ghosh, P.K.: Ion Traps. International Series of Monographs on Physics. Clarendon Press, Oxford (1995)

    Google Scholar 

  74. Berkeland, D.J., Miller, J.D., Bergquist, J.C., Itano, W.M., Wineland, D.J.: Minimization of ion micromotion in a paul trap. J. Appl. Phys. 83(10), 5025–5033 (1998)

    Article  ADS  Google Scholar 

  75. Drewsen, M., Brodersen, C., Hornekær, L., Hangst, J.S., Schifffer, J.P.: Large ion crystals in a linear paul trap. Phys. Rev. Lett. 81, 2878–2881 (1998)

    Article  ADS  Google Scholar 

  76. Vittorini, G., Hucul, D., Inlek, I.V., Crocker, C., Monroe, C.: Entanglement of distinguishable quantum memories. Phys. Rev. A 90, 040302 (2014)

    Article  ADS  Google Scholar 

  77. Clark, C.R., Chou, C., Ellis, A.R., Hunker, J., Kemme, S.A., Maunz, P., Tabakov, B., Tigges, C., Stick, D.L.: Characterization of fluorescence collection optics integrated with a microfabricated surface electrode ion trap. Phys. Rev. Appl. 1, 024004 (2014)

    Article  ADS  Google Scholar 

  78. Tabakov, B., Benito, F., Blain, M., Clark, C.R., Clark, S., Haltli, R.A., Maunz, P., Sterk, J.D., Tigges, C., Stick, D.: Assembling a ring-shaped crystal in a microfabricated surface ion trap. Phys. Rev. Appl. 4, 031001 (2015)

    Article  ADS  Google Scholar 

  79. Doret, S.C., Amini, J.M., Wright, K., Volin, C., Killian, T., Ozakin, A., Denison, D., Hayden, H., Pai, C.-S., Slusher, R.E., Harter, A.W.: Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation. New J. Phys. 14(7), 073012 (2012)

    Article  ADS  Google Scholar 

  80. Shu, G., Vittorini, G., Buikema, A., Nichols, C.S., Volin, C., Stick, D., Brown, K.R.: Heating rates and ion-motion control in a Y-junction surface-electrode trap. Phys. Rev. A 89, 062308 (2014)

    Article  ADS  Google Scholar 

  81. Herold, C.D., Fallek, S.D., Merrill, J.T., Meier, A.M., Brown, K.R., Volin, C.E., Amini, J.M.: Universal control of ion qubits in a scalable microfabricated planar trap. New J. Phys. 18(2), 023048 (2016)

    Article  ADS  Google Scholar 

  82. Antohi, P.B., Schuster, D., Akselrod, G.M., Labaziewicz, J., Ge, Y., Lin, Z., Bakr, W.S., Chuang, I.L.: Cryogenic ion trapping systems with surface-electrode traps. Rev. Sci. Instrum. 80(1), 013103 (2009)

    Article  ADS  Google Scholar 

  83. Vittorini, G., Wright, K., Brown, K.R., Harter, A.W., Doret, S.Charles: Modular cryostat for ion trapping with surface-electrode ion traps. Rev. Sci. Instrum. 84(4), 043112 (2013)

    Article  ADS  Google Scholar 

  84. Labaziewicz, J., Ge, Y., Antohi, P., Leibrandt, D., Brown, K.R., Chuang, I.L.: Suppression of heating rates in cryogenic surface-electrode ion traps. Phys. Rev. Lett. 100, 013001 (2008)

    Article  ADS  Google Scholar 

  85. Niedermayr, M., Lakhmanskiy, K., Kumph, M., Partel, S., Edlinger, J., Brownnutt, M., Blatt, R.: Cryogenic surface ion trap based on intrinsic silicon. New J. Phys. 16(11), 113068 (2014)

    Article  ADS  Google Scholar 

  86. Furukawa, T., Nishimura, J., Tanaka, U., Urabe, S.: Design and characteristic measurement of miniature three-segment linear paul trap. Jpn. J. Appl. Phys. 44(10R), 7619 (2005)

    Article  ADS  Google Scholar 

  87. Bergquist, J.C., Hulet, R.G., Itano, W.M., Wineland, D.J., Wineland, D.J.: Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699–1702 (1986)

    Article  ADS  Google Scholar 

  88. Wineland, D.J.: Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013)

    Article  ADS  Google Scholar 

  89. Smith, J., Lee, A., Richerme, P., Neyenhuis, B., Hess, P.W., Hauke, P., Heyl, M., Huse, D.A., Monroe, C.: Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12(10), 907–911 (2016). Letter

    Article  Google Scholar 

  90. Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., Nigg, D., Coish, W.A., Harlander, M., Hänsel, W., Hennrich, M., Blatt, R.: 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  91. Schmidt-Kaler, F., Haffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422(6930), 408–411 (2003)

    Article  ADS  Google Scholar 

  92. Monz, T., Kim, K., Hänsel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)

    Article  ADS  Google Scholar 

  93. Haffner, H., Hansel, W., Roos, C.F., Benhelm, J., Chek-al kar, D., Chwalla, M., Korber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Guhne, O., Dur, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438(7068), 643–646 (2005)

    Article  ADS  Google Scholar 

  94. Schmidt-Kaler, F., Häffner, H., Gulde, S., Riebe, M., Lancaster, G.P.T., Deuschle, T., Becher, C., Hänsel, W., Eschner, J., Roos, C.F., Blatt, R.: How to realize a universal quantum gate with trapped ions. Appl. Phys. B 77(8), 789–796 (2003)

    Article  ADS  Google Scholar 

  95. Rowe, M.A., Ben-Kish, A., Demarco, B., Leibfried, D., Meyer, V., Beall, J., Britton, J., Hughes, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Transport of quantum states and separation of ions in a dual rf ion trap. Quantum Inf. Comput. 2(4), 257–271 (2002)

    MATH  Google Scholar 

  96. Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M.D., Blakestad, R.B., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R., Wineland, D.J.: Realization of quantum error correction. Nature 432(7017), 602–605 (2004)

    Article  ADS  MATH  Google Scholar 

  97. Nizamani, A.H., Hensinger, W.K.: Optimum electrode configurations for fast ion separation in microfabricated surface ion traps. Appl. Phys. B 106(2), 327–338 (2012)

    Article  ADS  Google Scholar 

  98. McLoughlin, J.J., Nizamani, A.H., Siverns, J.D., Sterling, R.C., Hughes, M.D., Lekitsch, B., Stein, B., Weidt, S., Hensinger, W.K.: Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements. Phys. Rev. A 83, 013406 (2011)

    Article  ADS  Google Scholar 

  99. Korenblit, S., Kafri, D., Campbell, W.C., Islam, R., Edwards, E.E., Gong, Z.-X., Lin, G.-D., Duan, L.-M., Kim, J., Kim, K., Monroe, C.: Quantum simulation of spin models on an arbitrary lattice with trapped ions. New J. Phys. 14(9), 095024 (2012)

    Article  ADS  Google Scholar 

  100. Kim, K., Chang, M.-S., Korenblit, S., Islam, R., Edwards, E.E., Freericks, J.K., Lin, G.-D., Duan, L.-M., Monroe, C.: Quantum simulation of frustrated Ising spins with trapped ions. Nature 465(7298), 590–593 (2010)

    Article  ADS  Google Scholar 

  101. Edwards, E.E., Korenblit, S., Kim, K., Islam, R., Chang, M.-S., Freericks, J.K., Lin, G.-D., Duan, L.-M., Monroe, C.: Quantum simulation and phase diagram of the transverse-field Ising model with three atomic spins. Phys. Rev. B 82, 060412 (2010)

    Article  ADS  Google Scholar 

  102. Islam, R., Edwards, E.E., Kim, K., Korenblit, S., Noh, C., Carmichael, H., Lin, G.-D., Duan, L.-M., Joseph Wang, C.-C., Freericks, J.K., Monroe, C.: Onset of a quantum phase transition with a trapped ion quantum simulator. Nat. Commun. 2, 377 (2011) (EP –, Article)

  103. Senko, C., Smith, J., Richerme, P., Lee, A., Campbell, W.C., Monroe, C.: Coherent imaging spectroscopy of a quantum many-body spin system. Science 345(6195), 430–433 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  104. Pyka, K., Herschbach, N., Keller, J., Mehlstäubler, T.E.: A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock. Appl. Phys. B 114(1), 231–241 (2014)

    Article  ADS  Google Scholar 

  105. Deslauriers, L., Haljan, P.C., Lee, P.J., Brickman, K.-A., Blinov, B.B., Madsen, M.J., Monroe, C.: Zero-point cooling and low heating of trapped \(^{111}\)Cd\(^{+}\) ions. Phys. Rev. A 70, 043408 (2004)

    Article  ADS  Google Scholar 

  106. Weidt, S., Randall, J., Webster, S.C., Standing, E.D., Rodriguez, A., Webb, A.E., Lekitsch, B., Hensinger, W.K.: Ground-state cooling of a trapped ion using long-wavelength radiation. Phys. Rev. Lett. 115, 013002 (2015)

    Article  ADS  Google Scholar 

  107. Weidt, S., Randall, J., Webster, S.C., Lake, K., Webb, A.E., Cohen, I., Navickas, T., Lekitsch, B., Retzker, A., Hensinger, W.K.: Trapped-ion quantum logic with global radiation fields. Phys. Rev. Lett. 117, 220501 (2016)

    Article  ADS  Google Scholar 

  108. Brandstätter, B., McClung, A., Schüppert, K., Casabone, B., Friebe, K., Stute, A., Schmidt, P.O., Deutsch, C., Reichel, J., Blatt, R., Northup, T.E.: Integrated fiber-mirror ion trap for strong ion-cavity coupling. Rev. Sci. Instrum. 84(12), 123104 (2013)

    Article  ADS  Google Scholar 

  109. Streed, E.W., Norton, B.G., Jechow, A., Weinhold, T.J., Kielpinski, D.: Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106, 010502 (2011)

    Article  ADS  Google Scholar 

  110. Casabone, B., Friebe, K., Brandstätter, B., Schüppert, K., Blatt, R., Northup, T.E.: Enhanced quantum interface with collective ion-cavity coupling. Phys. Rev. Lett. 114, 023602 (2015)

    Article  ADS  Google Scholar 

  111. Vogell, B., Vermersch, B., Northup, T.E., Lanyon, B.P., Muschik, C.A.: Deterministic quantum state transfer between remote qubits in cavities. arXiv:1704.06233v2 (2017)

  112. Sterk, J.D., Luo, L., Manning, T.A., Maunz, P., Monroe, C.: Photon collection from a trapped ion-cavity system. Phys. Rev. A 85, 062308 (2012)

    Article  ADS  Google Scholar 

  113. Steiner, M., Meyer, H.M., Deutsch, C., Reichel, J., Köhl, M.: Single ion coupled to an optical fiber cavity. Phys. Rev. Lett. 110, 043003 (2013)

    Article  ADS  Google Scholar 

  114. Takahashi, H., Kassa, E., Christoforou, C., Keller, M.: Cavity-induced anti-correlated photon emission rates of a single ion. Phys. Rev. A 96, 023824 (2017)

    Article  ADS  Google Scholar 

  115. Meyer, H.M., Stockill, R., Steiner, M., Le Gall, C., Matthiesen, C., Clarke, E., Ludwig, A., Reichel, J., Atatüre, M., Köhl, M.: Direct photonic coupling of a semiconductor quantum dot and a trapped ion. Phys. Rev. Lett. 114, 123001 (2015)

    Article  ADS  Google Scholar 

  116. Wright, J., Auchter, C., Chou, C.-K., Graham, R.D., Noel, T.W., Sakrejda, T., Zhou, Z., Blinov, B.B.: Toward a scalable quantum computing architecture with mixed species ion chains. Quantum Inf. Process. 15, 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  117. Begley, S., Vogt, M., Gulati, G.K., Takahashi, H., Keller, M.: Optimized multi-ion cavity coupling. Phys. Rev. Lett. 116, 223001 (2016)

    Article  ADS  Google Scholar 

  118. Fogarty, T., Cormick, C., Landa, H., Stojanović, V.M., Demler, E., Morigi, G., Morigi, G.: Nanofriction in cavity quantum electrodynamics. Phys. Rev. Lett. 115, 233602 (2015)

    Article  ADS  Google Scholar 

  119. Shu, G., Chou, C.-K., Kurz, N., Dietrich, M.R., Blinov, B.B.: Efficient fluorescence collection and ion imaging with the “tack” ion trap. J. Opt. Soc. Am. B 28(12), 2865–2870 (2011)

    Article  ADS  Google Scholar 

  120. Maiwald, R., Golla, A., Fischer, M., Bader, M., Heugel, S., Chalopin, B., Sondermann, M., Leuchs, G.: Collecting more than half the fluorescence photons from a single ion. Phys. Rev. A 86, 043431 (2012)

    Article  ADS  Google Scholar 

  121. Kumph, M., Holz, P., Langer, K., Meraner, M., Niedermayr, M., Brownnutt, M., Blatt, R.: Operation of a planar-electrode ion-trap array with adjustable rf electrodes. New J. Phys. 18(2), 023047 (2016)

    Article  ADS  Google Scholar 

  122. Siverns, J.D., Seb, W., Lake, K., Lekitsch, B., Hughes, M.D., Hensinger, W.K.: Optimization of two-dimensional ion trap arrays for quantum simulation. New J. Phys. 14(8), 085009 (2012)

    Article  ADS  Google Scholar 

  123. Sterling, R.C., Rattanasonti, H., Weidt, S., Lake, K., Srinivasan, P., Webster, S.C., Kraft, M., Hensinger, W.K.: Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip. Nat. Commun. 5, 3637 (2014) (EP –, Article)

  124. Lindenfelser, F., Keitch, B., Kienzler, D., Bykov, D., Uebel, P., Schmidt, M.A., Russell, PStJ, Home, J.P.: An ion trap built with photonic crystal fibre technology. Rev. Sci. Instrum. 86(3), 033107 (2015)

    Article  ADS  Google Scholar 

  125. Stick, D., Hensinger, W.K., Olmschenk, S., Madsen, M.J., Schwab, K., Monroe, C.: Ion trap in a semiconductor chip. Nat. Phys. 2, 36–39 (2006)

    Article  Google Scholar 

  126. Wright, K., Amini, J.M., Faircloth, D.L., Volin, C., Doret, S.C., Hayden, H., Pai, C.-S., Landgren, D.W., Denison, D., Killian, T., Slusher, R.E., Harter, A.W.: Reliable transport through a microfabricated X-junction surface-electrode ion trap. New J. Phys. 15(3), 033004 (2013)

    Article  ADS  Google Scholar 

  127. Ospelkaus, C., Warring, U., Colombe, Y., Brown, K.R., Amini, J.M., Leibfried, D., Wineland, D.J.: Microwave quantum logic gates for trapped ions. Nature 476(7359), 181–184 (2011)

    Article  ADS  Google Scholar 

  128. Shappert, C.M., Merrill, J.T., Brown, K.R., Amini, J.M., Volin, C., Doret, S.C., Hayden, H., Pai, C.-S., Brown, K.R., Harter, A.W.: Spatially uniform single-qubit gate operations with near-field microwaves and composite pulse compensation. New J. Phys. 15(8), 083053 (2013)

    Article  ADS  Google Scholar 

  129. Merrill, J.T., Volin, C., Landgren, D., Amini, J.M., Wright, K., Doret, S.C., Pai, C.-S., Hayden, H., Killian, T., Faircloth, D., Brown, K.R., Harter, A.W., Slusher, R.E.: Demonstration of integrated microscale optics in surface-electrode ion traps. New J. Phys. 13(10), 103005 (2011)

    Article  Google Scholar 

  130. Wesenberg, J.H.: Electrostatics of surface-electrode ion traps. Phys. Rev. A 78, 063410 (2008)

    Article  ADS  Google Scholar 

  131. Mehta, K.K., Bruzewicz, C.D., McConnell, R., Ram, R.J., Sage, J.M., Chiaverini, J.: Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11(12), 1066–1070 (2016)

    ADS  Google Scholar 

  132. Kunert, P.J., Georgen, D., Bogunia, L., Baig, M.T., Baggash, M.A., Johanning, M., Wunderlich, C.: A planar ion trap chip with integrated structures for an adjustable magnetic field gradient. Appl. Phys. B 114(1–2), 27–36 (2014)

    Article  ADS  Google Scholar 

  133. Arrington, C.L., McKay, K.S., Baca, E.D., Coleman, J.J., Colombe, Y., Finnegan, P., Hite, D.A., Hollowell, A.E., Jördens, R., Jost, J.D., Leibfried, D., Rowen, A.M., Warring, U., Weides, M., Wilson, A.C., Wineland, D.J., Pappas, D.P.: Micro-fabricated stylus ion trap. Rev. Sci. Instrum. 84(8), 085001 (2013)

    Article  ADS  Google Scholar 

  134. Bloch, Immanuel: Ultracold quantum gases in optical lattices. Nat. Phys. 1(1), 23–30 (2005)

    Article  MathSciNet  Google Scholar 

  135. Guise, N.D., Fallek, S.D., Stevens, K.E., Brown, K.R., Volin, C., Harter, A.W., Amini, J.M., Higashi, R.E., Lu, S.T., Chanhvongsak, H.M., Nguyen, T.A., Marcus, M.S., Ohnstein, T.R., Youngner, D.W.: Ball-grid array architecture for microfabricated ion traps. J. Appl. Phys. 117(17), 174901 (2015)

    Article  ADS  Google Scholar 

  136. Guise, N.D., Fallek, S.D., Hayden, H., Pai, C.-S., Volin, C., Brown, K.R., Merrill, J.T., Harter, A.W., Amini, J.M., Lust, L.M., Muldoon, K., Carlson, D., Budach, J.: In-vacuum active electronics for microfabricated ion traps. Rev. Sci. Instrum. 85(6):063101 (2014)

  137. Ken Wright. Private communication

  138. Maunz, P.: High Optical Access Trap 2.0. Technical Report, Sandia National Laboratories (2016)

  139. Maunz, P.: High-fidelity two-qubit quantum gates in a scalable surface ion trap. In: Southwest Quantum Information Technology Workshop, Albuquerque, New Mexico (2016).

  140. Martinez, E.A., Muschik, C.A., Schindler, P., Nigg, D., Erhard, A., Heyl, M., Hauke, P., Dalmonte, M., Monz, T., Zoller, P., Blatt, R.: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534(7608), 516–519 (2016). Letter

    Article  ADS  Google Scholar 

  141. Brandl, M.F., van Mourik, M.W., Postler, L., Nolf, A., Lakhmanskiy, K., Paiva, R.R., Moller, S., Daniilidis, N., Haffner, H., Kaushal, V., Ruster, T., Warschburger, C., Kaufmann, H., Poschinger, U.G., Schmidt-Kaler, F., Schindler, P., Monz, T., Blatt, R.: Cryogenic setup for trapped ion quantum computing. Rev. Sci. Instrum. 87(11), 113103 (2016)

    Article  ADS  Google Scholar 

  142. Ghadimi, M., Blums, V., Norton, B.G., Fisher, P.M., Connell, S.C., Amini, J.M., Volin, C., Hayden, H., Pai, C.-S., Kielpinski, D., Lobino, M., Streed, E.W.: Scalable ion-photon quantum interface based on integrated diffractive mirrors. npj Quantum Inf. 3, 1 (2016)

    Google Scholar 

  143. Monroe, C., Kim, J.: Scaling the ion trap quantum processor. Science 339(6124), 1164–1169 (2013)

    Article  ADS  Google Scholar 

  144. Matsukevich, D.N., Maunz, P., Moehring, D.L., Olmschenk, S., Monroe, C.: Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008)

    Article  ADS  Google Scholar 

  145. Mount, E., Gaultney, D., Vrijsen, G., Adams, M., Baek, S.-Y., Hudek, K., Isabella, L., Crain, S., van Rynbach, A., Maunz, P., Kim, J.: Scalable digital hardware for a trapped ion quantum computer. Quantum Inf. Process. 15, 1–18 (2015)

    Google Scholar 

  146. National Institute Standards and Technology (NIST): Real-time infrastructure for quantum physics (ARTIQ). https://www.nist.gov/news-events/news/2015/01/open-source-software-quantum-information (2016). Accessed 2016

  147. Maunz, P.: Sandia National Laboratory Technical Report. https://github.com/pyIonControl (2016)

  148. Lin, G.-D., Duan, L.-M.: Sympathetic cooling in a large ion crystal. Quantum Inf. Process. 15, 1–15 (2015)

    Google Scholar 

  149. Kielpinski, D., Volin, C., Streed, E.W., Lenzini, F., Lobino, M.: Integrated optics architecture for trapped-ion quantum information processing. Quantum Inf. Process. 15, 1–24 (2015)

    Google Scholar 

  150. Eltony, A.M., Gangloff, D., Shi, M., Bylinskii, A., Vuletić, V., Chuang, I.L.: Technologies for trapped-ion quantum information systems. Quantum Inf. Process. 15, 1–33 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Ken Wright and Paul Hess for a thorough reading of the manuscript and Vikas Anant for the modeling of the SNSPD. Funding provided by the Army Research Lab, Cooperative Agreement and the Center for Distributed Quantum Information. All images preprinted from publications have been licensed for use and additionally permission requested from an author to reproduce the image. The US Government neither endorses nor guarantees in any way organizations, companies or products included in this article, and such mention is only given for illustrative purposes; other competing options may be equal or better than those mentioned here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qudsia Quraishi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siverns, J.D., Quraishi, Q. Ion trap architectures and new directions. Quantum Inf Process 16, 314 (2017). https://doi.org/10.1007/s11128-017-1760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1760-2

Keywords

Navigation