Skip to main content
Log in

Properties of long quantum walks in one and two dimensions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum walk (QW) is the term given to a family of algorithms governing the evolution of a discrete quantum system and as such has a founding role in the study of quantum computation. We contribute to the investigation of QW phenomena by performing a detailed numerical study of discrete-time quantum walks. In one dimension (1D), we compute the structure of the probability distribution, which is not a smooth curve but shows oscillatory features on all length scales. By analyzing walks up to N = 1,000,000 steps, we discuss the scaling characteristics and limiting forms of the QW in both real and Fourier space. In 2D, with a view to ready experimental realization, we consider two types of QW, one based on a four-faced coin and the other on sequential flipping of a single two-faced coin. Both QWs may be generated using two two-faced coins, which in the first case are completely unentangled and in the second are maximally entangled. We draw on our 1D results to characterize the properties of both walks, demonstrating maximal speed-up and emerging semi-classical behavior in the maximally entangled QW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44, 307–327 (2003)

    Article  ADS  Google Scholar 

  2. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  3. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  4. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1, 507 (2003)

    Article  MATH  Google Scholar 

  5. Kendon, V.: A random walk approach to quantum algorithms. Phil. Trans. R. Soc. A 364, 3407 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC 03, pp. 59–68 (2003)

  7. Kempe, J.: Discrete quantum walks hit exponentially faster. In: Proceedings of the 7th International Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM03), pp. 354–369 (2003)

  8. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of 16th ACM-SIAM SODA, pp. 1099–1108 (2005)

  9. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC, vol. 01, pp. 37–49 (2001)

  10. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1, 35 (2002)

    Article  MathSciNet  Google Scholar 

  11. Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5, 83 (2003)

    Article  ADS  Google Scholar 

  12. Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum walks driven by many coins. Phys. Rev. A 67, 052317 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  13. Xue, P., Sanders, B.C.: Two quantum walkers sharing coins. Phys. Rev. A 85, 022307 (2012)

    Article  ADS  Google Scholar 

  14. Xue, P.: Implementation of multi-walker quantum walks with cavity grid. J. Comput. Theor. Nanosci. 10, 1606–1612 (2013)

    Article  Google Scholar 

  15. Mackay, T.D., Bartlett, S.D., Stephenson, L.T., Sanders, B.C.: Quantum walks in higher dimensions. J. Phys. A Math. Gen. 35, 2745 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Zhang, R., Xue, P.: Two-dimensional quantum walk with position-dependent phase defects. Quantum Inf. Process. 13, 1825–1839 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Di Franco, C., McGettrick, M., Machida, T., Busch, T.: Alternate two-dimensional quantum walk with a single-qubit coin. Phys. Rev. A 84, 042337 (2011)

    Article  ADS  Google Scholar 

  18. Di Franco, C., McGettrick, M., Busch, T.: Mimicking the probability distribution of a two-dimensional grover walk with a single-qubit coin. Phys. Rev. Lett. 106, 080502 (2011)

    Article  Google Scholar 

  19. Do, B., Stohler, M.L., Balasubramanian, S., Elliott, D.S., Eash, C., Fischbach, E., Fischbach, M.A., Mills, A., Zwickl, B.: Experimental realization of a quantum quincunx by use of linear optical elements. J. Opt. Soc. Am. B 22, 499–504 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. Schreiber, A., Cassemiro, K.N., Potoc̆ek, V., G’abris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010)

    Article  ADS  Google Scholar 

  21. Zhang, P., Ren, X.F., Zou, X.B., Liu, B.H., Huang, Y.F., Guo, G.C.: Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons. Phys. Rev. A 75, 052310 (2007)

    Article  ADS  Google Scholar 

  22. Zhang, P., Liu, B.H., Liu, R.F., Li, H.R., Li, F.L., Guo, G.C.: Implementation of one-dimensional quantum walks on spin-orbital angular momentum space of photons. Phys. Rev. A 81, 052322 (2010)

    Article  ADS  Google Scholar 

  23. Karski, M., Förster, L., Choi, J.M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325, 174–177 (2009)

    Article  ADS  Google Scholar 

  24. Schmitz, H., Matjeschk, R., Schneider, C., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504 (2009)

    Article  ADS  Google Scholar 

  25. Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)

    Article  Google Scholar 

  26. Ryan, C.A., Laforest, M., Boileau, J.C., Laflamme, R.: Experimental implementation of a discrete–time quantum random walk on an nmr quantum-information processor. Phys. Rev. A 72, 062317 (2005)

    Article  ADS  Google Scholar 

  27. Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008)

    Article  ADS  Google Scholar 

  28. Schreiber, A., Gábris, A., Rohde, P.P., Laiho, K., Stefanak, M., Potoc̈ek, V., Hamilton, C., Jex, I., Silberhorn, C.: A 2d quantum walk simulation of two-particle dynamics. Science 336, 55–58 (2012)

    Article  ADS  Google Scholar 

  29. Xue, P., Zhang, R., Qin, H., Zhan, X., Bian, Z.H., Li, J., Sanders, B.C.: Experimental quantum-walk revival with a time-dependent coin. Phys. Rev. Lett. 114, 140502 (2015)

    Article  ADS  Google Scholar 

  30. Bian, Z., Li, J., Qin, H., Zhan, X., Zhang, R., Sanders, B.C., Xue, P.: Realization of single-qubit positive-operator-valued measurement via a one-dimensional photonic quantum walk. Phys. Rev. Lett. 114, 203602 (2015)

    Article  ADS  Google Scholar 

  31. Xue, P., Qin, H., Tang, B., Sanders, B.C.: Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space. New J. Phys. 16, 053009 (2014)

    Article  ADS  Google Scholar 

  32. Xue, P., Qin, H., Tang, B., Sanders, B.C.: Trapping photons on the line: controllable dynamics of a quantum walk. Sci. Rep. 4, 04825 (2014)

    ADS  Google Scholar 

  33. Marquezino, F., Portugal, R.: The QWalk simulator of quantum walks. Comput. Phys. Commun. 179, 359–369 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Sawerwain, M., Gielerak, R.: GPGPU based simulations for one and two dimensional quantum walks. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) Computer Networks, pp. 29–38. Springer, Berlin (2010)

  35. Konno, N.: A new type of limit theorems for the one-dimensional quantum random walk. J. Math. Soc. Jpn. 57, 1179 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)

    Article  ADS  Google Scholar 

  37. Oliveira, A.C., Portugal, R., Donangelo, R.: Decoherence in two-dimensional quantum walks. Phys. Rev. A 74, 012312 (2006)

    Article  ADS  Google Scholar 

  38. Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks. Phys. Rev. A 69, 052323 (2004)

    Article  ADS  Google Scholar 

  39. Roldán, E., Di Franco, C., Silva, F., de Valcárcel, G.J.: N-dimensional alternate coined quantum walks from a dispersion-relation perspective. Phys. Rev. A 87, 022336 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge helpful discussions with Professor B. Normand. Work at Renmin University was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11174365 and by the National Basic Research Program of China (NBRPC) under Grant No. 2012CB921704. PX was supported by the NSFC under Grant Nos. 11174052 and 11474049, by the NBRPC under Grant No. 2011CB921203, by the Open Fund from the State Key Laboratory of Precision Spectroscopy of East China Normal University, and by the CAST Innovation Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Xue, P. Properties of long quantum walks in one and two dimensions. Quantum Inf Process 14, 4361–4394 (2015). https://doi.org/10.1007/s11128-015-1127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1127-5

Keywords

Navigation