Skip to main content
Log in

Hyperfine spin qubits in irradiated malonic acid: heat-bath algorithmic cooling

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

An Erratum to this article was published on 26 October 2015

Abstract

The ability to perform quantum error correction is a significant hurdle for scalable quantum information processing. A key requirement for multiple-round quantum error correction is the ability to dynamically extract entropy from ancilla qubits. Heat-bath algorithmic cooling is a method that uses quantum logic operations to move entropy from one subsystem to another and permits cooling of a spin qubit below the closed system (Shannon) bound. Gamma-irradiated, \(^{13}\)C-labeled malonic acid provides up to five spin qubits: one spin-half electron and four spin-half nuclei. The nuclei are strongly hyperfine-coupled to the electron and can be controlled either by exploiting the anisotropic part of the hyperfine interaction or by using pulsed electron nuclear double resonance techniques. The electron connects the nuclei to a heat-bath with a much colder effective temperature determined by the electron’s thermal spin polarization. By accurately determining the full spin Hamiltonian and performing realistic algorithmic simulations, we show that an experimental demonstration of heat-bath algorithmic cooling beyond the Shannon bound is feasible in both three-qubit and five-qubit variants of this spin system. Similar techniques could be useful for polarizing nuclei in molecular or crystalline systems that allow for non-equilibrium optical polarization of the electron spin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  2. Knill, E., Laflamme, R., Zurek, W.H.: Resilient quantum computation. Science 279(5349), 342–345 (1998)

    Article  ADS  Google Scholar 

  3. Preskill, J.: Reliable quantum computers. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1969), 385–410 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005)

    Article  ADS  Google Scholar 

  5. Aliferis, P., Gottesman, D., Preskill, J.: Accuracy threshold for postselected quantum computation. Quantum Inf. Comput. 8(3&4), 0181–0244 (2008)

    MathSciNet  Google Scholar 

  6. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, Caltech (1997), eprint: quant-ph/9705052

  7. Taminiau, T.H., Cramer, J., van der Sar, T., Dobrovitski, V.V., Hanson, R.: Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 9(3), 171–176 (2014)

    Article  ADS  Google Scholar 

  8. Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., Omalley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519(7541), 66–69 (2015)

    Article  ADS  Google Scholar 

  9. Knill, E., Laflamme, R., Martinez, R., Tseng, C.H.: An algorithmic benchmark for quantum information processing. Nature 404(6776), 368–370 (2000)

    Article  ADS  Google Scholar 

  10. Negrevergne, C., Mahesh, T., Ryan, C., Ditty, M., Cyr-Racine, F., Power, W., Boulant, N., Havel, T., Cory, D., Laflamme, R.: Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96(17), 170501 (2006)

    Article  ADS  Google Scholar 

  11. Ryan, C.A., Laforest, M., Laflamme, R.: Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing. New J. Phys. 11(1), 013034 (2009)

    Article  ADS  Google Scholar 

  12. Emerson, J., Silva, M., Moussa, O., Ryan, C., Laforest, M., Baugh, J., Cory, D.G., Laflamme, R.: Symmetrized characterization of noisy quantum processes. Science 317(5846), 1893–1896 (2007)

    Article  ADS  Google Scholar 

  13. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  14. Criger, B., Moussa, O., Laflamme, R.: Quantum error correction with mixed ancilla qubits. Phys. Rev. A 85, 044302 (2012)

    Article  ADS  Google Scholar 

  15. Boykin, P.O., Mor, T., Roychowdhury, V., Vatan, F., Vrijen, R.: Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci. USA 99, 3388–3393 (2002)

    Article  MATH  ADS  Google Scholar 

  16. Fernandez, J.M., Lloyd, S., Mor, T., Roychowdhury, V.: Algorithmic cooling of spins: a practicable method for increasing polarization. Int. J. Quantum Inf. 2(4), 461–477 (2004)

    Article  Google Scholar 

  17. Rempp, F., Michel, M., Mahler, G.: Cyclic cooling algorithm. Phys. Rev. A 76, 032325 (2007)

    Article  ADS  Google Scholar 

  18. Kaye, P.: Cooling algorithm based on the 3-bit majority. Quantum Inf. Process. 6(4), 295–322 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath algorithmic cooling. Phys. Rev. Lett. 94, 120501 (2005)

    Article  ADS  Google Scholar 

  20. Baugh, J., Moussa, O., Ryan, C.A., Nayak, A., Laflamme, R.: Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance. Nature 438(7067), 470–473 (2005)

    Article  ADS  Google Scholar 

  21. Ryan, C.A., Moussa, O., Baugh, J., Laflamme, R.: Spin based heat engine: demonstration of multiple rounds of algorithmic cooling. Phys. Rev. Lett. 100, 140501 (2008)

    Article  ADS  Google Scholar 

  22. Cole, T., Heller, C., McConnell, H.: Electron magnetic resonance of CH(COOH)\(_2\). Proc. Natl. Acad. Sci. USA 45(4), 525–528 (1959)

    Article  ADS  Google Scholar 

  23. Cole, T., Heller, C.: Hyperfine splittings in the (HOOC) C\(^{13}\)H (COOH) radical. J. Chem. Phys. 34, 1085–1086 (1961)

    Article  ADS  Google Scholar 

  24. Horsfield, A., Morton, J., Whiffen, D.: Electron spin resonance of \(\gamma \)-irradiated malonic acid. Mol. Phys. 4(4), 327–332 (1961)

    Article  ADS  Google Scholar 

  25. Khaneja, N.: Switched control of electron nuclear spin systems. Phys. Rev. A 76, 032326 (2007)

    Article  ADS  Google Scholar 

  26. Hodges, J.S., Yang, J.C., Ramanathan, C., Cory, D.G.: Universal control of nuclear spins via anisotropic hyperfine interactions. Phys. Rev. A 78(1), 010303 (2008)

    Article  ADS  Google Scholar 

  27. Zhang, Y., Ryan, C.A., Laflamme, R., Baugh, J.: Coherent control of two nuclear spins using the anisotropic hyperfine interaction. Phys. Rev. Lett. 107(17), 170503 (2011)

    Article  ADS  Google Scholar 

  28. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T., Glaser, S.J.: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172(2), 296–305 (2005)

    Article  ADS  Google Scholar 

  29. Loubser, J., Van Wyk, J.: Electron spin resonance in the study of diamond. Rep. Prog. Phys. 41(8), 1201–1248 (1978)

    Article  ADS  Google Scholar 

  30. Doherty, M.W., Manson, N.B., Delaney, P., Hollenberg, L.C.: The negatively charged nitrogen-vacancy centre in diamond: the electronic solution. New J. Phys. 13(2), 025019 (2011)

    Article  ADS  Google Scholar 

  31. Doherty, M., Dolde, F., Fedder, H., Jelezko, F., Wrachtrup, J., Manson, N., Hollenberg, L.: Theory of the ground-state spin of the NV- center in diamond. Phys. Rev. B 85(20), 205203 (2012)

    Article  ADS  Google Scholar 

  32. Akhtar, W., Filidou, V., Sekiguchi, T., Kawakami, E., Itahashi, T., Vlasenko, L., Morton, J.J.L., Itoh, K.M.: Coherent storage of photoexcited triplet states using \(^{29}\)Si nuclear spins in silicon. Phys. Rev. Lett. 108, 097601 (2012)

    Article  ADS  Google Scholar 

  33. Goedkoop, J.A., MacGillavry, C.H.: The crystal structure of malonic acid. Acta Crystallogr. 10(2), 125–127 (1957)

    Article  Google Scholar 

  34. Jagannathan, N., Rajan, S., Subramanian, E.: Refinement of the crystal structure of malonic acid, C\(_3\)H\(_4\)O\(_4\). J. Chem. Crystallogr. 24(1), 75–78 (1994)

    Article  Google Scholar 

  35. Krzystek, J., Kwiram, A.B., Kwiram, A.L.: EDNMR and ENDOR study of the \(\beta \)-\(\gamma \) phase transition in malonic acid crystals. J. Phys. Chem. 99(1), 402–409 (1995)

    Article  Google Scholar 

  36. Fukai, M., Matsuo, T., Suga, H.: Thermodynamic properties of phase transitions in malonic acid and its deuterated analogue. Thermochim. Acta 183, 215–243 (1991)

    Article  Google Scholar 

  37. McCalley, R., Kwiram, A.L.: ENDOR studies at 4.2 k of the radicals in malonic acid single crystals. J. Phys. Chem. 97(12), 2888–2903 (1993)

    Article  Google Scholar 

  38. McConnell, H., Heller, C., Cole, T., Fessenden, R.: Radiation damage in organic crystals. I. CH (COOH)\(_2\) in malonic acid. J. Am. Chem. Soc. 82(4), 766–775 (1960)

    Article  Google Scholar 

  39. Morton, J.: Electron spin resonance spectra of oriented radicals. Chem. Rev. 64(4), 453–471 (1964)

    Article  Google Scholar 

  40. Sagstuen, E., Lund, A., Itagaki, Y., Maruani, J.: Weakly coupled proton interactions in the malonic acid radical: single crystal ENDOR analysis and EPR simulation at microwave saturation. J. Phys. Chem. A 104(27), 6362–6371 (2000)

    Article  Google Scholar 

  41. Kang, J., Tokdemir, S., Shao, J., Nelson, W.H.: Electronic g-factor measurement from ENDOR-induced EPR patterns: malonic acid and guanine hydrochloride dihydrate. J. Magn. Reson. 165(1), 128–136 (2003)

    Article  ADS  Google Scholar 

  42. Atherton, N.: Principles of Electron Spin Resonance. Ellis Horwood Limited, Chichester (1993)

    Google Scholar 

  43. Moussa, O.: On heat-bath algorithmic cooling and its implementation in solid-state NMR. Master’s thesis, University of Waterloo (2005)

  44. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Havel, T.F.: Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups. J. Math. Phys. 44, 534–557 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by NSERC, the Canada Foundation for Innovation, CIFAR, the province of Ontario and Industry Canada. T. Takui would like to thank the support via Grants-in-Aid for Scientific Research on Innovative Areas “Quantum Cybernetics” and Scientific Research (B) from MEXT, Japan. The support for the present work by the FIRST project on “Quantum Information Processing” from JSPS, Japan, and by the AOARD project on “Quantum Properties of Molecular Nanomagnets” (Award No. FA2386-13-1-4030) is also acknowledged. We acknowledge David Cory and Richard Oakley for access to CW ESR spectrometers, Aaron Mailman for help with CW ESR, Jalil Assoud for assistance with X-ray spectroscopy, and Robert Pasuta for help with gamma-irradiation of samples. We thank Dawei Lu, Tal Mor and Yossi Weinstein for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Baugh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D.K., Feng, G., Rahimi, R. et al. Hyperfine spin qubits in irradiated malonic acid: heat-bath algorithmic cooling. Quantum Inf Process 14, 2435–2461 (2015). https://doi.org/10.1007/s11128-015-0985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0985-1

Keywords

Navigation