Skip to main content
Log in

Quantum information at the interface of light with atomic ensembles and micromechanical oscillators

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This article reviews recent research towards a universal light-matter interface. Such an interface is an important prerequisite for long distance quantum communication, entanglement assisted sensing and measurement, as well as for scalable photonic quantum computation. We review the developments in light-matter interfaces based on room temperature atomic vapors interacting with propagating pulses via the Faraday effect. This interaction has long been used as a tool for quantum nondemolition detections of atomic spins via light. It was discovered recently that this type of light-matter interaction can actually be tuned to realize more general dynamics, enabling better performance of the light-matter interface as well as rendering tasks possible, which were before thought to be impractical. This includes the realization of improved entanglement assisted and backaction evading magnetometry approaching the Quantum Cramer-Rao limit, quantum memory for squeezed states of light and the dissipative generation of entanglement. A separate, but related, experiment on entanglement assisted cold atom clock showing the Heisenberg scaling of precision is described. We also review a possible interface between collective atomic spins with nano- or micromechanical oscillators, providing a link between atomic and solid state physics approaches towards quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Specht H.P., Nolleke C., Reiserer A., Uphoff M., Figueroa E., Ritter S., Rempe G.: A single-atom quantum memory. Nature 473(7346), 190–193 (2011). doi:10.1038/nature09997

    Article  ADS  Google Scholar 

  2. de Riedmatten H., Afzelius M., Staudt M.U., Simon C., Gisin N.: A solid-state light-matter interface at the single-photon level. Nature 456(7223), 773–777 (2008). doi:10.1038/nature07607

    Article  ADS  Google Scholar 

  3. Hedges M.P., Longdell J.J., Li Y., Sellars M.J.: Efficient quantum memory for light. Nature 465(7301), 1052–1056 (2010). doi:10.1038/nature09081

    Article  ADS  Google Scholar 

  4. Usmani I., Afzelius M., de Riedmatten H., Gisin N.: Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nat. Commun. 1, 12 (2010). doi:10.1038/ncomms1010

    Article  Google Scholar 

  5. Saglamyurek E., Sinclair N., Jin J., Slater J.A., Oblak D., Bussieres F., George M., Ricken R., Sohler W., Tittel W.: Broadband waveguide quantum memory for entangled photons. Nature 469(7331), 512–515 (2011). doi:10.1038/nature09719

    Article  ADS  Google Scholar 

  6. Cviklinski J., Ortalo J., Laurat J., Bramati A., Pinard M., Giacobino E.: Reversible quantum interface for tunable single-sideband modulation. Phys. Rev. Lett. 101(13), 133601 (2008). doi:10.1103/PhysRevLett.101.133601

    Article  ADS  Google Scholar 

  7. Yuan Z., Chen Y., Zhao B., Chen S., Schmiedmayer J., Pan J.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454(7208), 1098–1101 (2008). doi:10.1038/nature07241

    Article  ADS  Google Scholar 

  8. Zhao R., Dudin Y.O., Jenkins S.D., Campbell C.J., Matsukevich D.N., Kennedy T.A.B., Kuzmich A.: Long-lived quantum memory. Nat. Phys. 5(2), 100–104 (2009). doi:10.1038/nphys1152

    Article  Google Scholar 

  9. Zhang R., Garner S.R., Hau L.V.: Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates. Phys. Rev. Lett. 103(23), 233602 (2009). doi:10.1103/PhysRevLett.103.233602

    Article  ADS  Google Scholar 

  10. Zhao B., Chen Y., Bao X., Strassel T., Chuu C., Jin X., Schmiedmayer J., Yuan Z., Chen S., Pan J.: A millisecond quantum memory for scalable quantum networks. Nat. Phys. 5(2), 95–99 (2009). doi:10.1038/nphys1153

    Article  Google Scholar 

  11. Schnorrberger U., Thompson J., Trotzky S., Pugatch R., Davidson N., Kuhr S., Bloch I.: Electromagnetically induced transparency and light storage in an atomic mott insulator. Phys. Rev. Lett. 103(3), 033003 (2009). doi:10.1103/PhysRevLett.103.033003

    Article  ADS  Google Scholar 

  12. Reim K.F., Nunn J., Lorenz V.O., Sussman B.J., Lee K.C., Langford N.K., Jaksch D., Walmsley I.A.: Towards high-speed optical quantum memories. Nat. Photon. 4(4), 218–221 (2010). doi:10.1038/nphoton.2010.30

    Article  ADS  Google Scholar 

  13. Radnaev A.G., Dudin Y.O., Zhao R., Jen H.H., Jenkins S.D., Kuzmich A., Kennedy T.A.B.: A quantum memory with telecom-wavelength conversion. Nat. Phys. 6(11), 894–899 (2010). doi:10.1038/nphys1773

    Article  Google Scholar 

  14. Choi K.S., Goban A., Papp S.B., van Enk S.J., Kimble H.J.: Entanglement of spin waves among four quantum memories. Nature 468(7322), 412–416 (2010). doi:10.1038/nature09568

    Article  ADS  Google Scholar 

  15. Hosseini M., Sparkes B., Campbell G., Lam P., Buchler B.: High efficiency coherent optical memory with warm rubidium vapour. Nat. Commun. 2, 174 (2011). doi:10.1038/ncomms1175

    Article  Google Scholar 

  16. Wasilewski W., Fernholz T., Jensen K., Madsen L.S., Krauter H., Muschik C., Polzik E.S.: Single mode quadrature entangled light from room temperature atomic vapor. Opt. Express 16, 14444–14457 (2009)

    Article  ADS  Google Scholar 

  17. Jensen K., Wasilewski W., Krauter H., Fernholz T., Nielsen B.M., Owari M., Plenio M.B., Serafini A., Wolf M.M., Polzik E.S.: Quantum memory for entangled continuous-variable states. Nat. Phys. 7, 13–16 (2010). doi:10.1038/nphys1819Letter

    Article  Google Scholar 

  18. Wasilewski W., Jensen K., Krauter H., Renema J.J., Balabas M.V., Polzik E.S.: Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104(13), 133601 (2010). doi:10.1103/PhysRevLett.104.133601

    Article  ADS  Google Scholar 

  19. Hammerer K., Sørensen A.S., Polzik E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82(2), 1041–1093 (2010). doi:10.1103/RevModPhys.82.1041

    Article  ADS  Google Scholar 

  20. Sangouard N., Simon C., de Riedmatten H., Gisin N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83(1), 33 (2011). doi:10.1103/RevModPhys.83.33

    Article  ADS  Google Scholar 

  21. Lvovsky A.I., Sanders B.C., Tittel W.: Optical quantum memory. Nat. Photon. 3(12), 706–714 (2009). doi:10.1038/nphoton.2009.231

    Article  ADS  Google Scholar 

  22. Miller J.: Quantum memory for light takes a leap forward. Phys. Today 63(8), 13 (2010). doi:10.1063/1.3480062

    Article  Google Scholar 

  23. Julsgaard B., Sherson J., Cirac J.I., Fiurášek J., Polzik E.S.: Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004). doi:10.1038/nature03064Letter

    Article  ADS  Google Scholar 

  24. Sherson J.F., Krauter H., Olsson R.K., Julsgaard B., Hammerer K., Cirac I., Polzik E.S.: Quantum teleportation between light and matter. Nature 443, 557–560 (2006). doi:10.1038/nature05136Letter

    Article  ADS  Google Scholar 

  25. Julsgaard B., Kozhekin A., Polzik E.S.: Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001). doi:10.1038/35096524Letter

    Article  ADS  Google Scholar 

  26. Silberfarb A., Deutsch I.: Continuous measurement with traveling-wave probes. Phys. Rev. A 68, 13817 (2003). doi:10.1103/PhysRevA.68.013817

    Article  ADS  Google Scholar 

  27. Madsen L., Mølmer K.: Spin squeezing and precision probing with light and samples of atoms in the Gaussian description. Phys. Rev. A 70, 52324 (2004). doi:10.1103/PhysRevA.70.052324

    Article  ADS  Google Scholar 

  28. Hammerer K., Polzik E.S., Cirac J.I.: Teleportation and spin squeezing utilizing multimode entanglement of light with atoms. Phys. Rev. A 72, 052313 (2005). doi:10.1103/PhysRevA.72.052313

    Article  ADS  Google Scholar 

  29. Holstein T., Primakoff H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940). doi:10.1103/PhysRev.58.1098

    Article  ADS  MATH  Google Scholar 

  30. Lloyd S., Braunstein S.L.: Quantum computation over continuous variables. Phys. Rev. Lett. 82(8), 1784–1787 (1999). doi:10.1103/PhysRevLett.82.1784

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Kraus B., Hammerer K., Giedke G., Cirac J.I.: Entanglement generation and hamiltonian simulation in continuous-variable systems. Phys. Rev. A 67, 42314 (2003). doi:10.1103/PhysRevA.67.042314

    Article  ADS  Google Scholar 

  32. Kupriyanov D.V., Mishina O.S., Sokolov I.M., Julsgaard B., Polzik E.S.: Multimode entanglement of light and atomic ensembles via off-resonant coherent forward scattering. Rev. A 71(3), 032348 (2005). doi:10.1103/PhysRevA.71.032348

    Article  Google Scholar 

  33. Mishina, O., Kupriyanov, D., Polzik, E.S.: In: Proceedings of the NATO Advanced Research Workshop, Crete 2005: quantum communication and security, vol. 199, p. 346, ISO Press, Amsterdam (2006)

  34. Mishina O.S., Kupriyanov D.V., Müller J.H., Polzik E.S.: Spectral theory of quantum memory and entanglement via raman scattering of light by an atomic ensemble. Rev. A 75(4), 042326 (2007). doi:10.1103/PhysRevA.75.042326

    Article  Google Scholar 

  35. Hammerer K., Sørensen A.S., Polzik E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82(2), 1041 (2010). doi:10.1103/RevModPhys.82.1041

    Article  ADS  Google Scholar 

  36. Hammerer, K.: Quantum information processing with atomic ensembles and light. Ph.D. thesis, Max-Planck Institute for Quantumoptics (2006)

  37. Julsgaard, B.: Entanglement and quantum interactions with macroscopic gas samples. Ph.D. thesis, University of Aarhus (2003)

  38. Hammerer K., Polzik E.S., Cirac J.I.: High-fidelity teleportation between light and atoms. Phys. Rev. A 74(6), 064301 (2006). doi:10.1103/PhysRevA.74.064301

    Article  ADS  Google Scholar 

  39. Fiurášek J., Sherson v., Opatrný T., Polzik E.S.: Single-passage readout of atomic quantum memory. Phys. Rev. A 73(2), 022331 (2006). doi:10.1103/PhysRevA.73.022331

    Article  ADS  Google Scholar 

  40. Muschik C.A., Hammerer K., Polzik E.S., Cirac J.I.: Efficient quantum memory and entanglement between light and an atomic ensemble using magnetic fields. Phys. Rev. A 73(6), 062329 (2006). doi:10.1103/PhysRevA.73.062329

    Article  ADS  Google Scholar 

  41. Sherson J.F., Mølmer K.: Polarization squeezing by optical faraday rotation. Phys. Rev. Lett. 97(14), 143602 (2006). doi:10.1103/PhysRevLett.97.143602

    Article  ADS  Google Scholar 

  42. Krauter, H., Muschik, C.A., Jensen, K., Wasilewski, W., Petersen, J.M., Cirac, J.I., Polzik, E.S.: Entanglement generated by dissipation. Phys. Rev. Lett. 107, 080,503 (2011). http://arxiv.org/abs/1006.4344. ArXiv:1006.4344

    Google Scholar 

  43. Muschik, C.A., Polzik, E.S., Cirac, J.I.: Dissipatively driven entanglement of two macroscopic atomic ensembles. unpublished (2010). http://arxiv.org/abs/1007.2209. AArXiv:1007.2209

  44. Duan L.M., Lukin M.D., Cirac J.I., Zoller P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  45. Kimble H.J.: The quantum internet. Nature 453, 1023–1030 (2008). doi:10.1038/nature07127Insight

    Article  ADS  Google Scholar 

  46. DiVincenzo D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771 (2000)

    Article  MATH  Google Scholar 

  47. Honda K., Akamatsu D., Arikawa M., Yokoi Y., Akiba K., Nagatsuka S., Tanimura T., Furusawa A., Kozuma M.: Storage and retrieval of a squeezed vacuum. Phys. Rev. Lett. 100(9), 093601 (2008). doi:10.1103/PhysRevLett.100.093601

    Article  ADS  Google Scholar 

  48. Appel J., Figueroa E., Korystov D., Lobino M., Lvovsky A.I.: Quantum memory for squeezed light. Phys. Rev. Lett. 100(9), 093602 (2008). doi:10.1103/PhysRevLett.100.093602

    Article  ADS  Google Scholar 

  49. Chou C.W., de Riedmatten H., Felinto D., Polyakov S.V., van Enk S.J., Kimble H.J.: Measurement-induced entanglement for excitation stored in remote atomic ensemblese. Nature 438, 828 (2005)

    Article  ADS  Google Scholar 

  50. Eisaman M., André A., Massou F., Fleischhauer M., Zibrov A., Lukin M.D.: Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837 (2005)

    Article  ADS  Google Scholar 

  51. Matsukevich D.N., Chanelière T., Jenkins S.D., Lan S.Y., Kennedy T.A.B., Kuzmich A.: Entanglement of remote atomic qubits. Phys. Rev. Lett. 96(3), 030405 (2006). doi:10.1103/PhysRevLett.96.030405

    Article  ADS  Google Scholar 

  52. Yuan Z.S., Chen Y.A., Zhao B., Chen S., Schmiedmayer J., Pan J.W.: Experimental demonstration of a bdcz quantum repeater node. Nature 454, 1098–1101 (2008). doi:10.1038/nature07241Letter

    Article  ADS  Google Scholar 

  53. Appel J., Windpassinger P., Oblak D., Hoff U., Kjærgaard N., Polzik E.: Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. PNAS 106(27), 10960 (2009)

    Article  ADS  Google Scholar 

  54. Gross C., Zibold T., Nicklas E., Estve J., Oberthaler M.K.: Nonlinear atom interferometer surpasses classical precision limit. Nature 464(7292), 1165–1169 (2010). doi:10.1038/nature08919

    Article  ADS  Google Scholar 

  55. Riedel M.F., Bhi P., Li Y., Hnsch T.W., Sinatra A., Treutlein P.: Atom-chip-based generation of entanglement for quantum metrology. Nature 464(7292), 1170–1173 (2010). doi:10.1038/nature08988

    Article  ADS  Google Scholar 

  56. Fernholz T., Krauter H., Jensen K., Sherson J.F., Sørensen A.S., Polzik E.S.: Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement. Phys. Rev. Lett. 101(7), 073601 (2008). doi:10.1103/PhysRevLett.101.073601

    Article  ADS  Google Scholar 

  57. Plenio M.B., Huelga S.F.: Entangled light from white noise. Phys. Rev. Lett. 88(19), 197901 (2002). doi:10.1103/PhysRevLett.88.197901

    Article  ADS  Google Scholar 

  58. Kraus B., Cirac J.I.: Discrete entanglement distribution with squeezed light. Phys. Rev. Lett. 92(1), 013602 (2004). doi:10.1103/PhysRevLett.92.013602

    Article  ADS  Google Scholar 

  59. Diehl S., Micheli A., Kantian A., Kraus B., Büchler H.P., Zoller P.: Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008). doi:10.1038/nphys1073Article

    Article  Google Scholar 

  60. Verstraete F., Wolf M.M., Cirac J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009). doi:10.1038/nphys1342Letter

    Article  Google Scholar 

  61. Barreiro J.T., Müller M., Schindler P., Nigg D., Monz T., Chwalla M., Hennrich M., Roos C.F., Zoller P., Blatt R.: An open-system quantum simulator with trapped ions. Nature 470(7335), 486–491 (2011). doi:10.1038/nature09801

    Article  ADS  Google Scholar 

  62. Krauter, H. et al.: Fundamental quantum limit to waveform estimation. (submitted) (2011)

  63. Schori C., Sørensen J.L., Polzik E.S.: Narrow-band frequency tunable light source of continuous quadrature entanglement. Phys. Rev. A 66(3), 033802 (2002). doi:10.1103/PhysRevA.66.033802

    Article  ADS  Google Scholar 

  64. Budker D., Romalis M.: Optical magnetometry. Nat. Phys. 3(4), 227–234 (2007). doi:10.1038/nphys566

    Article  Google Scholar 

  65. Tsang M., Wiseman H.M., Caves C.M.: Fundamental quantum limit to waveform estimation. Phys. Rev. Lett. 106(9), 090401 (2011). doi:10.1103/PhysRevLett.106.090401

    Article  ADS  Google Scholar 

  66. Wineland D.J., Bollinger J.J., Itano W.M., Moore F.L., Heinzen D.J.: Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46(11), R6797–R6800 (1992). doi:10.1103/PhysRevA.46.R6797

    Article  ADS  Google Scholar 

  67. Lee S., Sauer K., Seltzer S., Alem O., Romalis M.: Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance. Appl. Phys. Lett. 89, 214106 (2006)

    Article  ADS  Google Scholar 

  68. Sherson J., Julsgaard B., Polzik E.: Deterministic atom-light quantum interface. Adv. At. Mol. Opt. Phys. 54, 81–130 (2006). doi:10.1016/S1049-250X(06)54002-9

    Article  Google Scholar 

  69. Balabas M.V., Karaulanov T., Ledbetter M.P., Budker D.: Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Phys. Rev. Lett. 105(7), 070801 (2010). doi:10.1103/PhysRevLett.105.070801

    Article  ADS  Google Scholar 

  70. Sørensen A., Duan L.M., Cirac J., Zoller P.: Many-particle entanglement with Bose-Einstein condensates. Nature 409, 63 (2001). doi:10.1038/35051038

    Article  ADS  Google Scholar 

  71. Wineland D.J., Bollinger J.J., Itano W.M., Moore F.L., Heinzen D.J.: Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46(11), R6797–R6800 (1992). doi:10.1103/PhysRevA.46.R6797

    Article  ADS  Google Scholar 

  72. Louchet-Chauvet A., Appel J.J.R.J., Oblak D., Kjaergaard N., Polzik E.S.: Entanglement-assisted atomic clock beyond the projection noise limit. New J. Phys 12, 065032 (2010)

    Article  ADS  Google Scholar 

  73. Saffman M., Oblak D., Appel J., Polzik E.S.: Spin squeezing of atomic ensembles by multicolor quantum nondemolition measurements. Phys. Rev. A 79(2), 023831 (2009). doi:10.1103/PhysRevA.79.023831

    Article  ADS  Google Scholar 

  74. Wallquist M., Hammerer K., Rabl P., Lukin M., Zoller P.: Hybrid quantum devices and quantum engineering. Phys. Scripta T 137, 014001 (2009)

    Article  ADS  Google Scholar 

  75. Groblacher S., Hammerer K., Vanner M., Aspelmeyer M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460(725), 724 (2009)

    Article  ADS  Google Scholar 

  76. Aspelmeyer M., Gröblacher S., Hammerer K., Kiesel N.: Quantum optomechanics—throwing a glance. JOSA B 27, A189–A197 (2010). doi:10.1364/JOSAB.27.00A189

    Article  ADS  Google Scholar 

  77. Vanner M.R., Pikovski I., Kim M.S., Brukner C., Hammerer K., Milburn G.J., Aspelmeyer M.: Pulsed quantum optomechanics. arxiv p. 1011.0879 (2011)

  78. Hammerer K., Aspelmeyer M., Polzik E.S., Zoller P.: Establishing Einstein–Poldosky–Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102(2), 020501 (2009). doi:10.1103/PhysRevLett.102.020501

    Article  ADS  Google Scholar 

  79. Rabl P., Cappellaro P., Dutt M.V.G., Jiang L., Maze J.R., Lukin M.D.: Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79(4), 041302 (2009). doi:10.1103/PhysRevB.79.041302

    Article  ADS  Google Scholar 

  80. Stannigel K., Rabl P., Sørensen A.S., Zoller P., Lukin M.D.: Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105(22), 220501 (2010). doi:10.1103/PhysRevLett.105.220501

    Article  ADS  Google Scholar 

  81. Hammerer K., Wallquist M., Genes C., Ludwig M., Marquardt F., Treutlein P., Zoller P., Ye J., Kimble H.J.: Strong coupling of a mechanical oscillator and a single atom. Phys. Rev. Lett. 103(6), 063005 (2009). doi:10.1103/PhysRevLett.103.063005

    Article  ADS  Google Scholar 

  82. Wallquist M., Hammerer K., Zoller P., Genes C., Ludwig M., Marquardt F., Treutlein P., Ye J., Kimble H.J.: Single-atom cavity qed and optomicromechanics. Phys. Rev. A 81(2), 023816 (2010). doi:10.1103/PhysRevA.81.023816

    Article  ADS  Google Scholar 

  83. Hammerer K., Stannigel K., Genes C., Zoller P., Treutlein P., Camerer S., Hunger D., Hänsch T.W.: Optical lattices with micromechanical mirrors. Phys. Rev. A 82(2), 021803 (2010). doi:10.1103/PhysRevA.82.021803

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klemens Hammerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muschik, C.A., Krauter, H., Hammerer, K. et al. Quantum information at the interface of light with atomic ensembles and micromechanical oscillators. Quantum Inf Process 10, 839 (2011). https://doi.org/10.1007/s11128-011-0294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-011-0294-2

Keywords

Navigation