Skip to main content
Log in

Optically Driven Quantum Computing Devices Based on Semiconductor Quantum Dots

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper concerns optically driven quantum logic devices based on semiconductor quantum dots. It provides a brief review of recent theoretical and experimental progress towards building such devices and a description of a possible direction of further research. We consider both the exciton and the electron spin as a potential qubit. Quantum dot fabrication and single dot spectroscopy studies are briefly discussed followed by a description of experimental demonstrations of basic quantum logic operations. A scheme for a scalable quantum computer based on optical control of electron spins localized in quantum dots is described in detail. Important lessons as well as challenges for future research are summarized.

PACS: 78.67.Hc, 42.50.Md, 03.67.Lx, 42.50.Hz

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev. Lett. 74, 4083 (1995).

    Google Scholar 

  2. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Phys. Rev. Lett. 76, 3005 (1996).

    Google Scholar 

  3. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Science 273, 87 (1996).

    Google Scholar 

  4. D. Gammon and D. G. Steel, Phys. Today 55(10), 36 (2002).

  5. F. Troiani, U. Hohenester, and E. Molinari, Phys. Rev. B 62, 2263 (2000).

    Google Scholar 

  6. E. Biolatti, R. C. Iotti, P. Zanardi, and F. Rossi, Phys. Rev. Lett. 85, 5647 (2000).

    Google Scholar 

  7. P. Chen, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett. 87, 067401 (2001).

    Google Scholar 

  8. N. Bonadeo, G. Chen, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, Phys. Rev. Lett. 83, 2267 (1998).

    Google Scholar 

  9. N. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, Science282, 1473 (1998).

  10. T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. Park, D. S. Katzer, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett. 87, 133603 (2001).

    Google Scholar 

  11. H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, Phys. Rev. Lett. 87, 246401 (2001).

    Google Scholar 

  12. H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, Jr., and C. K. Shih, Phys. Rev. Lett. 88, 087401 (2002).

    Google Scholar 

  13. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, Nature 418, 612 (2002).

    Google Scholar 

  14. G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, Science 289, 1906 (2000).

    Google Scholar 

  15. G. Chen, T. H. Stievater, E. T. Batteh, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, Phys. Rev. Lett. 88, 117901 (2002).

    Google Scholar 

  16. X. Li, Y. Wu, D. G. Steel, D. Gammon, and L. J. Sham, Submitted.

  17. X. Li, Y. Wu, D. G. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, Science 301, 809 (2003).

    Google Scholar 

  18. D. Loss and D. P. Dvincenzo, Phys. Rev. A 57, 120 (1998).

  19. C. Piermarocchi, P. Chen, L. J. Sham, and D. G. Steel, Phys. Rev. Lett. 89, 167402 (2002).

    Google Scholar 

  20. E. Pazy, E. Biolatti, T. Calarco, I. Damico, P. Zanardi, F. Rossi, and P. Zoller, Europhys. Lett. 62, 175 (2003); A. Imamoglu, E. Knill, L. Tian, and P. Zoller, Phys. Rev. Lett. 91, 017402 (2003); P. Solinas, P. Zanardi, N. Zanghi, and F. Rossi, Phys. Rev. B 67, 121307 (2003); F. Troiani, E. Molinari, and U. Hohenester, Phys. Rev. Lett. 90, 206802 (2003); T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, Phys. Rev. A 68, 12310 (2003).

    Google Scholar 

  21. R. J. Warburton, C. Schaflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, Nature 405, 926 (2001).

    Google Scholar 

  22. P. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel, Phys. Rev. B 69, 075320 (2004).

    Google Scholar 

  23. J. G. Tischler, A. S. Bracker, D. Gammon, and D. Park, Phys. Rev. B 66, 81310R (2002).

    Google Scholar 

  24. D. P. DiVincenzo, in Semiconductor Spintronics and Quantum Computation, D. D. Awschalom, D. Loss, and N. Samarth (Eds), (Springer, Berlin, 2002), p. 221.

    Google Scholar 

  25. D. Birkedal, K. Leosson, and J. M. Hvam, Phys. Rev. Lett. 87, 227401 (2001).

    Google Scholar 

  26. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87, 157401 (2001).

    Google Scholar 

  27. M. Bayer and A. Forchel, Phys. Rev. B 65, 041308 (2002).

  28. R. Hanson, B. Witkamp, L. M. K. Vandersypen, L. H. Willems van Beveren, J. M. Elzerman, and L. P. Kouwenhoven, Phys. Rev. Lett. 91, 196802 (2003).

    Google Scholar 

  29. Ishikawa, T. Nishimura, S. Kohmoto, K. Asakawa, Appl. Phys. Lett. 76, 167 (2000).

  30. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).

    Google Scholar 

  31. J. R. Guest, T. H. Stievater, G. Chen, E. T. Tabak, B. G. Orr, D. G. Steel, D. Gammon, and D. S. Katzer, Science 293, 2224 (2001).

    Google Scholar 

  32. Q. Wu, D. Grober, D. Gammon, and D. S. Katzer, Phys. Rev. Lett. 83, 2652 (1999).

    Google Scholar 

  33. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003).

    Google Scholar 

  34. A. Lenihan, M. V. Gurudev Dutt, D. G. Steel, S. Ghosh, and P. K. Bhattacharya, Phys. Rev. Lett. 88, 223601 (2002).

    Google Scholar 

  35. J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 78, 390 (1997).

    Google Scholar 

  36. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. Divincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).

    Google Scholar 

  37. T. A. Brun and H. Wang, Phys. Rev. A 61, 032307 (2000).

  38. A. Shabaev, A. L. Efros, D. Gammon, and I. A. Merkulov, Phys. Rev. B 68, 201305 (2003).

    Google Scholar 

  39. W. Yao, R. Liu, and L. J. Sham, cond-mat/0312272.

  40. K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).

    Google Scholar 

  41. M. H. Levitt, Prog. NMR Spect. 18, 61–122 (1986).

    Google Scholar 

  42. A. M. Wiener, Prog. Quant. Electr. 19, 161–237 (1995).

    Google Scholar 

  43. C. Piermarocchi, P. Chen, Y. Dale, and L. J. Sham, Phys. Rev. B 65, 075307 (2002).

    Google Scholar 

  44. D. Goswami, Phys. Rep. 374, 385 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Steel, D., Gammon, D. et al. Optically Driven Quantum Computing Devices Based on Semiconductor Quantum Dots. Quantum Information Processing 3, 147–161 (2004). https://doi.org/10.1007/s11128-004-0416-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-004-0416-1

Navigation