Skip to main content
Log in

Development of a minimized model structure and a feedback control framework for regulating photosynthetic activities

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In this work, the main activities of the plant photosynthesis process are discussed to yield a minimized mathematical model structure with photosystem II (PSII) chlorophyll a fluorescence (ChlF) as a measurable output. After experimental validation of the model structure, we demonstrate that the states of the photosynthetic process may be observed by using this model and the extended Kalman filter method. We then show a feedback control framework that can be used to alter a given photosynthetic activity. The control framework is demonstrated with an example in which PSII ChlF is used as the feedback signal and light intensity is used as a controllable process input to regulate plastoquinone reduction. Although there are caveats, and further research is needed, the results lay the groundwork for further research on novel methods for optimization and regulation of photosynthetic activities, with a goal for sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A:

Antenna molecules

CEF:

Cyclic electron flow

ChlF:

Chlorophyll a fluorescence

Cytb6f:

Cytochrome b6f

C a :

Atmospheric CO2 concentration

C i :

Internal CO2 concentration in the cells

DPGA:

Diphosphoglyceraldehyde

EKF:

Extended Kalman filter method

Fd:

Ferredoxin

FNR:

Ferredoxin-NADP reductase

FQR:

Ferredoxin-PQ reductase

\({\text{H}}^{ + }_{\text{lumen}}\) :

\({\text{H}}^{ + } \left( {\text{s}} \right)\) in the thylakoid lumen

\({\text{H}}^{ + }_{\text{stroma}}\) :

\({\text{H}}^{ + } \left( {\text{s}} \right)\) in the chloroplast stroma

KABP:

3-Ketoarabinitol-1,5-bisphosphate

LEF:

Linear electron flow

NADPH:

Nicotinamide adenine dinucleotide phosphate, reduced form

NPQ:

Non-photochemical quenching of excited state of Chl

OEC:

Oxygen evolving complex

P680:

Reaction center Chl of Photosystem II, with one of the absorption maxima at 680 nm

PC:

Plastocyanin

PGA:

3-Phosphoglycerate

PGAld:

Phosphoglyceraldehyde

Pheo:

Pheophytin—primary electron acceptor in Photosystem II

PID:

Proportion, integral, and derivative control method

pmf:

Proton motive force

PQ:

Plastoquinone

PQH2 :

Plastoquinol

PSI:

Photosystem I

PSII:

Photosystem II

Q A :

Primary PSII plastoquinone (electron) acceptor

Q B :

Secondary PSII plastoquinone (electron) acceptor

RuBP:

Ribulose 1,5-bisphosphate

WWC:

Water–water cycle

XuBP:

Xylulose-1,5-bisphosphate

References

  • Allen JF (2002) Photosynthesis of ATP—electrons, proton pumps, rotors, and poise. Cell 110:273–276

    CAS  PubMed  Google Scholar 

  • Allen JF (2003) Cycle, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trend Plant Sci 8(1):1–19

    Google Scholar 

  • Alvarez-Ramirez J, Kelly R, Cervantes I (2003) Semiglobal stability of saturated linear pid control for robot manipulators. Automatica 39(6):989–995

    Google Scholar 

  • Antal TK, Kovalenko IB, Rubin AB, Tyystjärvi E (2013) Photosynthesis-related quantities for education and modeling. Photosynth Res 117:1–30

    CAS  PubMed  Google Scholar 

  • Bassham JA (2003) Mapping the carbon reduction cycle: a personal retrospective. Photosynth Res 76:35–52

    PubMed  Google Scholar 

  • Blankenship RE (2002) Origin and early evolution of photosynthesis. Blackwell Sci 256(2):42–48

    Google Scholar 

  • Buchanan B (2016) The carbon (formerly dark) reactions of photosynthesis. Photosynth Res 128(2):215–217

    CAS  PubMed  Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378

    CAS  Google Scholar 

  • Chui C, Chen G (1998) Kalman filtering with real-time applications, 3rd edn. Springer, Berlin, pp 19–45, 115–145

  • Cramer WA, Kallas T (2015) Cytochrome complexes: evolution, structures, energy transduction, and signaling. Adv Photosynth Res 41:253–264

    Google Scholar 

  • Crofts AR (2004) The Q-cycle-a personal perspective. Photosynth Res 80(1–3):223–243

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Garab G, Adams W, Govindjee (2014) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Adv Photosynth Res 40:45–72

    Google Scholar 

  • Ebenhöh O, Houwaart T, Lokstein H, Schlede S, Tirok K (2011) A minimal mathematical model of non-photochemical quenching of chlorophyll fluorescence. BioSystems 103:196–204

    PubMed  Google Scholar 

  • Ebenhöh O, Fucile G, Finazzi G, Rochaix JD, Goldschmidt-Clermont M (2014) Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model. Philos Trans R Soc Lond 369(1640):20130223

    Google Scholar 

  • Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    CAS  PubMed  Google Scholar 

  • Feng S, Fu L, Xia Q, Tan J, Jiang Y, Guo Y (2018) Modeling and simulation of Photosystem II chlorophyll fluorescence transition from dark-adapted state to light-adapted State. IET Syst Biol 12(6):289–293

    PubMed  Google Scholar 

  • Finazzi G, Johnson GN (2016) Cyclic electron flow: facts and hypotheses. Photosynth Res 129:227–230

    CAS  PubMed  Google Scholar 

  • Golbeck JH (2006) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Adv Photsynth Res 24:155–175

    Google Scholar 

  • Gopal M (1996) Modern control system theory, 2nd edn. New Age International Limited, New Delhi

    Google Scholar 

  • Govindjee (1995) Sixty-three years since kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    CAS  Google Scholar 

  • Govindjee, Shevela D, Björn LO (2017) Evolution of the Z-scheme of photosynthesis. Photosynth Res 133:5–15

    CAS  PubMed  Google Scholar 

  • Guo Y, Tan J (2011) Modeling and simulation of the initial phases of chlorophyll fluorescence from Photosystem II. BioSystems 103:152–157

    CAS  PubMed  Google Scholar 

  • Guo Y, Tan J (2014) Kinetic Monte Carlo simulation of the initial phases of chlorophyll fluorescence from Photosystem II. BioSystems 115:1–4

    CAS  PubMed  Google Scholar 

  • Guo Y, Tan J (2015) Recent advance in the application of chlorophyll a fluorescence from Photosystem II. Photochem Photobiol 91:1–14

    CAS  PubMed  Google Scholar 

  • Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271–282

    CAS  Google Scholar 

  • Iersel MW, Weaver G, Martin MT (2016) A chlorophyll fluorescence-based biofeedback system to control photosynthetic lighting in controlled environment agriculture. Am Soc Hort Sci 141(2):169–176

    Google Scholar 

  • Joët T, Cournac L, Peltier G, Havaux M (2002) Cyclic electron flow around photosystem I in C3 plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. Plant Physiol 128(2):760–769

    PubMed  PubMed Central  Google Scholar 

  • Junge W (2004) Protons, proteins and ATP. Photosynth Res 80(1–3):197–221

    CAS  PubMed  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng Trans 82(Series D):35–45

    Google Scholar 

  • Katul GG, Ellsworth DS, Lai CT (2000) Modelling assimilation and intercellular CO2 from measured conductance: a synthesis of approaches. Plant Cell Environ 23:1313–1328

    Google Scholar 

  • Kennedy D, Norman C (2005) What don’t we know? Science 30(5731):75

    Google Scholar 

  • Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynt hetic O2 Evolution-I. A linear four step mechanism. Photochem Photobiol 11:457–475

    CAS  PubMed  Google Scholar 

  • Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78

    CAS  PubMed  Google Scholar 

  • Laisk A, Eichelman H, Oja V (2006) C3 photosynthesis in silico. Photosynth Res 90:45–66

    CAS  PubMed  Google Scholar 

  • Lazár D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30

    PubMed  Google Scholar 

  • Lazár D, Pospíšil P (1999) Mathematical simulation of chlorophyll a, fluorescence rise measured with 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea-treated barley leaves at room and high temperatures. Eur Biophys J 28(6):468–477

    PubMed  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain problems in least squares. Q Appl Math 2:164–168

    Google Scholar 

  • Mamedov M, Govindjee, Nadtochenko V, Semenov A (2017) Primary electrontransfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth Res 125:51–63

    Google Scholar 

  • Mar T, Govindjee (1972) Kinetic models of oxygen evolution in photosynthesis. J Theor Biol 36:427–446

    CAS  PubMed  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Google Scholar 

  • Matuszyńska A, Heidari S, Jahns P, Ebenhoh O (2016) A mathematical model of non-photochemical quenching to study short-term light memory in plants. Biochim Biophys Acta 1857:1860–1869

    PubMed  Google Scholar 

  • Mirkovic T, Ostrumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD (2016) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117(2):249–293

    PubMed  Google Scholar 

  • Najafpour M, Moghaddam AN, Shen JR, Govindjee (2013) Water oxidation and water oxidizing complex in cyanobacteria. In: Srivastava A et al (eds) Stress biology of cyanobacteria. Taylor & Francis, UK, pp 41–60

    Google Scholar 

  • Papageorgiou GC, Govindjee (2004) Chlorophyll a fluoresence: a signature of photosynthesis. Adv Photosynth Respir 19:757–778

    Google Scholar 

  • Papageorgiou GC, Govindjee (2014) The Non-photochemical quenching of the electronically excited state of chlorophyll a in plants: definitions, timelines, viewpoints, open questions. In: Demmig-Adams B, Garab G, Adams W, Govindjee (eds) Nonphotochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer, Dordrecht, pp. 1–44

  • Portis AR (2003) Rubisco activase–Rubisco’s catalytic chaperone. Photosynth Res 75:11–27

    CAS  PubMed  Google Scholar 

  • Rabinowitch E, Govindjee (1969) Photosynthesis. Wiley http://www.life.illinois.edu/govindjee/g/Books.html; and http://www.life.illinois.edu/govindjee/photosynBook.html

  • Sacksteder C, Kanazawa A, Jacoby M, Kramer D (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proc Natl Acad Sci USA 9(26):14283–14288

    Google Scholar 

  • Shevela D, Eaton-Rye J, Shen J, Govindjee (2012) Photosystem II and unique role of bicarbonate: a historical perspective. Biochim Biophys Acta 1817:1134–1151

    CAS  PubMed  Google Scholar 

  • Shevela D, Björn LO, Govindjee (2013) Oxygenic Photosynthesis. In: Razeghifard R (ed) Natural and artificial photosynthesis: solar power as an energy source. Wiley, Hoboken, pp 13–63

    Google Scholar 

  • Shevela D, Bjorn L, Govindjee (2019) Photosynthesis: solar energy for life. World Scientific, Singapore

    Google Scholar 

  • Snellenburg J, Johnson M, Ruban A, van Grondelle R, van Stokkum I (2017) A four state parametric model for the kinetics of non-photochemical quenching in Photosystem II. Biochim Biophys Acta 1858:854–864

    CAS  Google Scholar 

  • Stirbet A, Govindjee (2016) The slow phase of chlorophyll a fluorescence induction in silico: origin of the S-M fluorescence rise. Photosynth Res 130:193–213

    CAS  PubMed  Google Scholar 

  • Stirbet A, Lazar D, Kromdijk J, Govindjee (2018) Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthesica 56(1):86–104

    CAS  Google Scholar 

  • Velthuys BR, Amesz J (1974) Charge accumulation at the reducing side of system 2 of photosynthesis. Biochim Biophys Acta 333(1):85–94

    CAS  PubMed  Google Scholar 

  • Wang S, Tang H, Xia Q, Jiang Y, Tan J, Guo Y (2018) Modeling and simulation of photosynthetic activities in C3 plant as affected by CO2. IET Syst Biol. https://doi.org/10.1049/iet-syb.2018.5064

    Article  PubMed  Google Scholar 

  • Winkler HH, Neuhaus HE (1999) Non-mitochondrial ATP transport. Trends Biochem Sci 24(2):64–68

    CAS  PubMed  Google Scholar 

  • Wu A, Hammer GL, Doherty A, Caemmerer SV, Farquhar GD (2019) Quantifying impacts of enhancing photosynthesis on crop yield. Nat Plants 5:380–388

    PubMed  Google Scholar 

  • Wydrzynski T, Satoh K (2005) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Adv Photsynth Res 22:331–335

    Google Scholar 

  • Xia Q, Tan J, Ji X, Jiang Y, Guo Y (2018) Modeling and simulation of chlorophyll fluorescence from Photosystem II as affected by temperature. IET Syst Biol 12(6):304–310

    PubMed  Google Scholar 

  • Zhu XG, Govindjee Baker NR, de Sturler E, Ort DR, Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Planta 223:114–133

    CAS  PubMed  Google Scholar 

  • Zhu XG, Wang Y, Ort DR, Long SP (2013) e-photosynthesis: a comprehensive dynamic mechanistic model of C3 photosynthesis: from light capture to sucrose synthesis. Plant Cell Environ 36:1711–1727

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alexendrina (Sandra) Stirbet for her critical comments that led to improvement of our paper. This project was partially supported by National Natural Science Foundation of China (Nos: 51961125102, 31771680), Fundamental Research Funds for the Central Universities of China (No: JUSRP51730A), the Modern Agriculture Funds of Jiangsu Province (No: BE2018334), the 111 Project (B12018), and the Research Funds for New Faculty of Jiangnan University. Govindjee thanks the Department of Plant Biology and the Department of Biochemistry of the University of Illinois at Urbana-Champaign, for constant support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Govindjee Govindjee or Ya Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Govindjee, G., Tan, J. et al. Development of a minimized model structure and a feedback control framework for regulating photosynthetic activities. Photosynth Res 146, 213–225 (2020). https://doi.org/10.1007/s11120-019-00690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-019-00690-1

Keywords

Navigation