Skip to main content
Log in

Reaction centers of the thermophilic microaerophile, Chloracidobacterium thermophilum (Acidobacteria) I: biochemical and biophysical characterization

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Chloracidobacterium thermophilum is a microaerophilic, anoxygenic member of the green chlorophototrophic bacteria. This bacterium is the first characterized oxygen-requiring chlorophototroph with chlorosomes, the FMO protein, and homodimeric type-1 reaction centers (RCs). The RCs of C. thermophilum are also unique because they contain three types of chlorophylls, bacteriochlorophyll aP esterified with phytol, Chl aPD esterified with Δ2,6-phytadienol, and Zn-BChl aP′ esterified with phytol, in the approximate molar ratio 32:24:4. The light-induced difference spectrum of these RCs had a bleaching maximum at 839 nm and also revealed an electrochromic bandshift that is probably derived from a BChl a molecule near P840+. The FX [4Fe–4S] cluster had a midpoint potential of ca. − 581 mV, and the spectroscopic properties of the P+ F X spin-polarized radical pair were very similar to those of reaction centers of heliobacteria and green sulfur bacteria. The data further indicate that electron transfer occurs directly from A0 to FX, as occurs in other homodimeric type-1 RCs. Washing experiments with isolated membranes suggested that the PscB subunit of these reaction centers is more tightly bound than PshB in heliobacteria. Thus, the reaction centers of C. thermophilum have some properties that resemble other homodimeric reaction centers but also have specific properties that are more similar to those of Photosystem I. These differences probably contribute to protection of the electron transfer chain from oxygen, contributing to the oxygen tolerance of this microaerophile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyll

BPheo:

Bacteriopheophytin

C :

Chloracidobacterium

Cba :

Chlorobaculum

Chl:

Chlorophyll

CW-EPR:

Continuous wave, field-modulated, time-resolved continuous-wave electron paramagnetic resonance

β-DDM:

n-dodecyl-β-maltoside

EPR:

Electron paramagnetic resonance

FMO:

Fenna–Matthews–Olson bacteriochlorophyll a-binding protein

HEPES:

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid

HPLC:

High-performance liquid chromatography

2D-HYSCORE:

Two-dimensional hyperfine sublevel correlation spectroscopy

LC–MS-MS:

Liquid chromatography-tandem mass spectrometry

LED:

Light-emitting diode

OD:

Optical density

P:

Phyol

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate-buffered saline

PD:

2,6-Phytadienol

Pheo:

Pheophytin

photo-CIDNP:

Photochemically induced dynamic nuclear polarization

PSI:

Photosystem I

PSII:

Photosystem II

RC(s):

Reaction center(s)

RP:

Reversed phase

SDS:

Sodium dodecyl sulfate

SHE:

Standard hydrogen electrode

trEPR:

Transient electron paramagnetic resonance

ZFS:

Zero field splitting

References

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  • Bryant DA (1994) The molecular biology of cyanobacteria. Advances in photosynthesis and respiration, vol 1. Springer, Dordrecht

    Book  Google Scholar 

  • Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496

    Article  CAS  Google Scholar 

  • Bryant DA, Canniffe DP (2018) How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes. J Phys B: At Mol Opt Phys 51:033001

    Article  Google Scholar 

  • Bryant DA, Garcia Costas AM, Maresca JA, Chew AGM, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 317:523–526

    Article  CAS  Google Scholar 

  • Cardona T, Murray JW, Rutherford AW (2015) Origin and evolution of water oxidation before the last common ancestor of the cyanobacteria. Mol Biol Evol 32:1310–1328

    Article  CAS  Google Scholar 

  • Charles P, Kalendra V, He Z, Khurshov V, van der Est A, Golbeck JH, Bryant DA, Lakshmi KV (2019) Elucidating the role of zing-bacteriochlorophyll a′ in the primary photochemistry of Chloracidobacterium thermophilum reaction centers. Biophys J 116:419a

    Article  Google Scholar 

  • Ferlez B, Cowgill J, Dong W, Gisriel C, Lin S, Flores M, Walters K, Cetnar D, Redding KE, Golbeck JH (2016) Thermodynamics of the electron acceptors in Heliobacterium modesticaldum: an exemplar of an early homodimeric type I photosynthetic reaction center. Biochemistry 55:2358–2370

    Article  CAS  Google Scholar 

  • Ferlez B, Agostini A, Carbonera D, Golbeck JH, van der Est A (2017) Triplet charge recombination in heliobacterial reaction centers does not produce a spin-polarized EPR spectrum. Z Phys Chem 231:593–607

    Article  CAS  Google Scholar 

  • Frigaard N-U, Takaichi S, Hirota M, Shimada K, Matsuura K (1997) Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch Microbiol 167:343–349

    Article  CAS  Google Scholar 

  • Garcia Costas AM, Tsukatani Y, Romberger SP, Oostergetel G, Boekema E, Golbeck JH, Bryant DA (2011) Ultrastructural analysis and identification of envelope proteins of “Candidatus Chloracidobacterium thermophilum” chlorosomes. J Bacteriol 193:6701–6711

    Article  Google Scholar 

  • Garcia Costas AM, Liu Z, Tomsho LP, Schuster SC, Ward DM, Bryant DA (2012a) Complete genome of Candidatus Chloracidobacterium thermophilum, a chlorophyll-based photoheterotroph belonging to the phylum Acidobacteria. Environ Microbiol 14:177–190

    Article  Google Scholar 

  • Garcia Costas AM, Tsukatani Y, Rijpstra WIC, Schouten S, Welander PV, Summons RE, Bryant DA (2012b) Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of “Candidatus Chloracidobacterium thermophilum”. J Bacteriol 194:1158–1168

    Article  Google Scholar 

  • Gisriel C, Sarrou I, Ferlez B, Golbeck JH, Redding KE, Fromme R (2017) Structure of a symmetric photosynthetic reaction center-photosystem. Science 357:1021–1025

    Article  CAS  Google Scholar 

  • Golbeck JH (1993) Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci USA 90:1642–1646

    Article  CAS  Google Scholar 

  • Golbeck JH, Bryant DA (1991) Photosystem I. In: Lee CP (ed) Current topics in bioenergetics: light-driven reactions in bioenergetics. Academic Press, New York, pp 83–177

    Chapter  Google Scholar 

  • Gomez Maqueo Chew A, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129

    Article  Google Scholar 

  • Grotjohann I, Fromme P (2005) Structure of cyanobacterial photosystem I. Photosynth Res 85:51–72

    Article  CAS  Google Scholar 

  • Heinnickel M, Golbeck JH (2007) Heliobacterial photosynthesis. Photosynth Res 92:35–53

    Article  CAS  Google Scholar 

  • Heinnickel M, Shen G, Agalarov R, Golbeck JH (2005) Resolution and reconstitution of a bound Fe-S protein from the photosynthetic reaction center of Heliobacterium modesticaldum. Biochemistry 44:9950–9960

    Article  CAS  Google Scholar 

  • Heinnickel M, Shen G, Golbeck JH (2007) Identification and characterization of PshB, the dicluster ferredoxin that harbors the terminal electron acceptors FA and FB in Heliobacterium modesticaldum. Biochemistry 46:2530–2536

    Article  CAS  Google Scholar 

  • Hiyama T, Ke B (1972) Difference spectra and extinction coefficients of P700. Biochim Biophys Acta 267:160–171

    Article  CAS  Google Scholar 

  • Ishikita H, Stehlik D, Golbeck JH, Knapp EW (2006) Electrostatic influence of PsaC protein binding to the PsaA/PsaB heterodimer in Photosystem I. Biophys J 90:1081–1089

    Article  CAS  Google Scholar 

  • Jagannathan B, Golbeck JH (2008) Unifying principles in homodimeric type I photosynthetic reaction centers: properties of PscB and the FA, FB and FX iron-sulfur clusters in green sulfur bacteria. Biochim Biophys Acta 1777:1535–1544

    Article  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5Å resolution. Nature 411:909–917

    Article  CAS  Google Scholar 

  • Klatt CG, Wood JM, Rusch DB, Bateson MM, Hamamura N, Heidelberg JF, Grossman AR, Bhaya D, Cohan FM, Kühl M, Bryant DA, Ward DM (2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J 5:1262–1278

    Article  CAS  Google Scholar 

  • Liu Z, Klatt CG, Ludwig M, Rusch DB, Jensen SI, Kühl M, Ward DM, Bryant DA (2012) ‘Candidatus Thermochlorobacter aerophilum:’ an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J 6:1869–1882

    Article  CAS  Google Scholar 

  • Mathis P, Ikegam I, Sétif P (1988) Nanosecond flash studies of the absorption spectrum of the photosystem I primary acceptor A0. Photosynth Res 16:203–210

    Article  CAS  Google Scholar 

  • Monger TG, Cogdell RJ, Parson WW (1976) Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Biochim Biophys Acta 449:136–153

    Article  CAS  Google Scholar 

  • Nitschke W, Rutherford AW (1991) Photosynthetic reaction centres: variations on a common structural theme? Trend Biochem Sci 16:241–245

    Article  CAS  Google Scholar 

  • Oh-oka H (2007) Type 1 reaction center of photosynthetic heliobacteria. Photochem Photobiol 83:177–186

    Article  CAS  Google Scholar 

  • Parrett KG, Mehari T, Warren PG, Golbeck JH (1989) Purification and properties of the intact P-700 and FX-containing photosystem I core protein. Biochim Biophys Acta 973:324–332

    Article  CAS  Google Scholar 

  • Romberger SP, Castro C, Sun Y, Golbeck JH (2010) Identification and characterization of PshBII, a second FA/FB-containing polypeptide in the photosynthetic reaction center or Heliobacterium modesticaldum. Photosynth Res 104:293–303

    Article  CAS  Google Scholar 

  • Sadekar S, Raymond J, Blankenship RE (2006) Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol 23:2001–2007

    Article  CAS  Google Scholar 

  • Schaffernicht H, Junge W (1981) Analysis of the complex band spectrum of P700 based on photoselection studies with photosystem I particles. Photochem Photobiol 34:223–232

    Article  CAS  Google Scholar 

  • Sétif P, Seo D, Sakurai H (2001) Photoreduction and reoxidation of the three iron-sulfur clusters of reaction centers of green sulfur bacteria. Biophys J 81:1208–1219

    Article  Google Scholar 

  • Shen J-R (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48

    Article  CAS  Google Scholar 

  • Shen G, Bryant DA (1995) Characterization of a Synechococcus sp. strain PCC 7002 mutant lacking Photosystem I. Protein assembly and energy distribution in the absence of the Photosystem I reaction center core complex. Photosynth Res 44:41–53

    Article  CAS  Google Scholar 

  • Shuvalov VA, Klevanik AV, Sharkov AV, Kryukov PG, Ke B (1979) Picosecond spectroscopy of photosystem I reaction centers. FEBS Lett 107:313–316

    Article  CAS  Google Scholar 

  • Tahon G, Willems A (2017) Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica. Syst Appl Microbiol 40:357–369

    Article  CAS  Google Scholar 

  • Tank M, Bryant DA (2015a) Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int J Syst Evol Microbiol 65:1426–1430

    Article  CAS  Google Scholar 

  • Tank M, Bryant DA (2015b) Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium Chloracidobacterium thermophilum. Front Microbiol 6:226

    Article  Google Scholar 

  • Tank M, Thiel V, Ward DM, Bryant DA (2017) A panoply of phototrophs: an overview of chlorophototrophs found in the microbial mats of alkaline siliceous hot springs in Yellowstone National Park, WY, USA. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes: environmental and applied aspects. Springer, Berlin, pp 87–137

    Chapter  Google Scholar 

  • Tank M, Garcia Costas AM, Bryant DA (2018) Genus: Chloracidobacterium. In: Whitman WB (ed) Bergey’s manual of systematics of bacteria and archaea. Wiley, New York

    Google Scholar 

  • Thiel V, Tank M, Bryant DA (2018) Diversity of chlorophototrophic bacteria revealed in the omics era. Annu Rev Plant Biol 69:21–49

    Article  CAS  Google Scholar 

  • Thurnauer MC, Katz JJ, Norris JR (1975) The triplet state in bacterial photosynthesis: possible mechanisms of the primary photo-act. Proc Natl Acad Sci USA 72:3270–3274

    Article  CAS  Google Scholar 

  • Thweatt JL, Canniffe DP, Bryant DA (2019) Biosynthesis of chlorophylls and bacteriochlorophylls in green bacteria. In: Grimm B (ed) Advances in botanical research., vol 90. Metabolism, structure and function of chlorophylls. Elsevier, Amsterdam

    Google Scholar 

  • Tomi T, Shibata Y, Ikeda Y, Taniguchi S, Haik C, Mataga N, Shimada K, Itoh S (2007) Energy and electron transfer in the photosynthetic reaction center complex of Acidiphilium rubrum containing Zn-bacteriochlorophyll a studied by femtosecond up-conversion spectroscopy. Biochim Biophys Acta 1767:22–30

    Article  CAS  Google Scholar 

  • Tsukatani Y, Wen J, Blankenship RE, Bryant DA (2010) Characterization of the bacteriochlorophyll a-binding, Fenna-Matthews-Olson protein from Candidatus Chloracidobacterium thermophilum. Photosynth Res 104:201–209

    Article  CAS  Google Scholar 

  • Tsukatani Y, Romberger SP, Golbeck JH, Bryant DA (2012) Isolation and characterization of homodimeric type-I reaction center complex from Candidatus Chloracidobacterium thermophilum, an aerobic chlorophototroph. J Biol Chem 287:5720–5732

    Article  CAS  Google Scholar 

  • van de Meent EJ, Kobayashi M, Erkelens C, van Veelen PA, Amesz J, Watanabe T (1991) Identification of 81-hydroxychlorophyll a as a functional reaction center pigment in heliobacteria. Biochim Biophys Acta 1058:356–362

    Article  Google Scholar 

  • van de Meent EJ, Kobayashi M, Erkelens C, van Veelen PA, Otte S, Inoue K, Watanabe T, Amesz J (1992) The nature of the primary electron acceptor in green sulfur bacteria. Biochim Biophys Acta 1102:371–378

    Article  Google Scholar 

  • van der Est A, Hager-Braun C, Leibl W, Hauska G, Stehlik D (1998) Transient electron paramagnetic resonance spectroscopy on green-sulfur bacteria and heliobacteria at two microwave frequencies. Biochim Biophys Acta 1409:87–98

    Article  Google Scholar 

  • Vassiliev IR, Jung YS, Mamedov MD, Semenov A, Golbeck JH (1997) Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in Photosystem I. Biophys J 72:301–315

    Article  CAS  Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–893

    Article  CAS  Google Scholar 

  • Ward LM, McGlynn SE, Fischer WW (2017) Draft genome sequence of Chloracidobacterium sp. CP2_5A, a phototrophic member of the phylum Acidobacteria recovered from a Japanese hot spring. Genome Announc 5:e00821-17

    Article  Google Scholar 

  • Wen J, Tsukatani Y, Cui W, Zhang H, Gross ML, Bryant DA, Blankenship RE (2011) Structural model and spectroscopic characteristics of the FMO antenna protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum. Biochim Biophys Acta 1807:157–164

    Article  CAS  Google Scholar 

  • Zeng Y, Feng F, Medova H, Dean J, Koblížek M (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci USA 111:7795–7800

    Article  CAS  Google Scholar 

  • Zill JC, He Z, Tank M, Ferlez BH, Canniffe DP, Lahav Y, Bellstedt P, Alia A, Schapiro I, Golbeck JH, Bryant DA, Matysik J (2018) 15N photo-CIDNP MAS NMR analysis of reaction centers of Chloracidobacterium thermophilum. Photosynth Res 137:295–305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Tatiana N. Laremore of the Proteomics and Mass Spectrometry core facility (Huck Institutes for the Life Sciences, The Pennsylvania State University) for performing the tryptic peptide fingerprinting studies reported here. The authors would also like to thank Dr. Art van der Est for helpful discussions about transient EPR data. Studies in the laboratories of D.A.B. and J.H.G. were supported by Grants Nos. DE-FG02-94ER20137 and DE-SC0010575, respectively, from the Photosynthetic Systems Program, Division of Chemical Sciences, Geosciences, and Biosciences (CSGB), Office of Basic Energy Sciences of the U. S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Bryant.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Ferlez, B., Kurashov, V. et al. Reaction centers of the thermophilic microaerophile, Chloracidobacterium thermophilum (Acidobacteria) I: biochemical and biophysical characterization. Photosynth Res 142, 87–103 (2019). https://doi.org/10.1007/s11120-019-00650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-019-00650-9

Keywords

Navigation