Skip to main content
Log in

Statistical considerations on the formation of circular photosynthetic light-harvesting complexes from Rhodopseudomonas palustris

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Depending on growth conditions, some species of purple photosynthetic bacteria contain peripheral light-harvesting (LH2) complexes that are heterogeneous owing to the presence of different protomers (containing different αβ-apoproteins). Recent spectroscopic studies of Rhodopseudomonas palustris grown under low-light conditions suggest the presence of a C 3-symmetric LH2 nonamer comprised of two distinct protomers. The software program Cyclaplex, which enables generation and data-mining of virtual libraries of molecular rings formed upon combinatorial reactions, has been used to delineate the possible number and type of distinct nonamers as a function of numbers of distinct protomers. The yield of the C 3-symmetric nonamer from two protomers (A and B in varying ratios) has been studied under the following conditions: (1) statistical, (2) enriched (preclusion of the B-B sequence), and (3) seeded (pre-formation of an A-B-A block). The yield of C 3-symmetric nonamer is at most 0.98 % under statistical conditions versus 5.6 % under enriched conditions, and can be dominant under conditions of pre-seeding with an A-B-A block. In summary, the formation of any one specific nonamer even from only two protomers is unlikely on statistical grounds but must stem from enhanced free energy of formation or a directed assembly process by as-yet unknown factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LH2:

Light-harvesting complex 2

Bchl a :

Bacteriochlorophyll a

NIR:

Near-infrared

References

  • Brotosudarmo THP, Kunz R, Böhm P, Gardiner AT, Moulisová V, Cogdell RJ, Köhler J (2009) Single-molecule spectroscopy reveals that individual low-light LH2 complexes from Rhodopseudomonas palustris 2.1.6. have a heterogeneous polypeptide composition. Biophys J 97:1491–1500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brotosudarmo THP, Collins AM, Gall A, Roszak AW, Gardiner AT, Blankenship RE, Cogdell RJ (2011) The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium. Biochem J 440:51–61

    Article  CAS  PubMed  Google Scholar 

  • Cogdell RJ, Howard TD, Isaacs NW, McLuskey K, Gardiner AT (2002) Structural factors which control the position of the Qy absorption band of bacteriochlorophyll a in purple bacterial antenna complexes. Photosynth Res 74:135–141

    Article  CAS  PubMed  Google Scholar 

  • Cogdell RJ, Gall A, Köhler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39:227–324

    Article  CAS  PubMed  Google Scholar 

  • Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York, p 601

    Google Scholar 

  • Evans MB, Hawthornthwaite AM, Cogdell RJ (1990) Isolation and characterisation of the different B800–850 light-harvesting complexes from low- and high-light grown cells of Rhodopseudomonas palustris, strain 2.1.6. Biochim Biophys Acta 1016:71–76

    Article  CAS  Google Scholar 

  • Evans K, Fordham-Skelton AP, Mistry H, Reynolds CD, Lawless AM, Papiz MZ (2005) A bacteriophytochrome regulates the synthesis of LH4 complexes in Rhodopseudomonas palustris. Photosynth Res 85:169–180

    Article  CAS  PubMed  Google Scholar 

  • Fowler GJS, Visschers RW, Grief GG, van Grondelle R, Hunter CN (1992) Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355:848–850

    Article  CAS  PubMed  Google Scholar 

  • Gall A, Robert B (1999) Characterization of the different peripheral light-harvesting complexes from high- and low-light grown cells from Rhodopseudomonas palustris. Biochemistry 38:5185–5190

    Article  CAS  PubMed  Google Scholar 

  • Gardiner AT, Cogdell RJ, Takaichi S (1993) The effect of growth conditions on the light-harvesting apparatus in Rhodopseudomonas acidophila. Photosynth Res 38:159–167

    Article  CAS  PubMed  Google Scholar 

  • Grote Z, Scopelliti R, Severin K (2003) Adaptive behavior of dynamic combinatorial libraries generated by assembly of different building blocks. Angew Chem Int Ed 42:3821–3825

    Article  CAS  Google Scholar 

  • Grote Z, Scopelliti R, Severin K (2007) Controlled formation of mixed-metal macrocycles using dynamic exchange processes and steric constraints. Eur J Inorg Chem 694–700

  • Harris MA, Parkes-Loach PS, Springer JW, Jiang J, Martin EC, Qian P, Jiao J, Niedzwiedzki DM, Kirmaier C, Olsen JD, Bocian DF, Holten D, Hunter CN, Lindsey JS, Loach PA (2013) Integration of multiple chromophores with native photosynthetic antennas to enhance solar energy capture and delivery. Chem Sci 4:3924–3933

    Article  CAS  Google Scholar 

  • Hartigan N, Tharia HA, Sweeney F, Lawless AM, Papiz MZ (2002) The 7.5-Å electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustris. Biophys J 82:963–977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henry SL, Cogdell RJ (2013) The evolution of the purple photosynthetic bacterial light-harvesting system. In: Beatty JT (ed) Genome evolution of photosynthetic bacteria. Adv Botanical Res 66:205–226

  • Hofmann C, Aartsma TJ, Köhler J (2004) Energetic disorder and the B850-exciton states of individual light-harvesting 2 complexes from Rhodopseudomonas acidophila. Chem Phys Lett 395:373–378

    Article  CAS  Google Scholar 

  • Hunter RL, Markert CL (1957) Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science 125:1294–1295

    Article  CAS  PubMed  Google Scholar 

  • Ketelaars M, van Oijen AM, Matsushita M, Köhler J, Schmidt J, Aartsma TJ (2001) Spectroscopy on the B820 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila I. Experiments and Monte Carlo simulations. Biophys J 80:1591–1603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K, Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4:581–597

    Article  CAS  PubMed  Google Scholar 

  • Mazur DR (2010) Combinatorics: a guided tour. The Mathematical Association of America, Washington, DC, pp 187–224

    Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    Article  CAS  Google Scholar 

  • McLuskey K, Prince SM, Cogdell RJ, Isaacs NW (2001) The crystallographic structure of the B800–820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. Biochemistry 40:8783–8789

    Article  CAS  PubMed  Google Scholar 

  • Mislow K (2003) Absolute asymmetric synthesis: a commentary. Coll Czech Chem Commun 68:849–864

    Article  CAS  Google Scholar 

  • Moulisová V, Luer L, Hoseinkhani S, Brotosudarmo THP, Collins AM, Lanzani G, Blankenship RE, Cogdell RJ (2009) Low light adaptation: energy transfer processes in different types of light harvesting complexes from Rhodopseudomonas palustris. Biophys J 97:3019–3028

    Article  PubMed Central  PubMed  Google Scholar 

  • Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW (2003) The structure and thermal motion of the B800–850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: new structural features and functionally relevant motions. J Mol Biol 326:1523–1538

    Article  CAS  PubMed  Google Scholar 

  • Pólya G, Read RC (1987) Combinatorial enumeration of groups, graphs, and chemical compounds. Springer, New York

    Book  Google Scholar 

  • Pólya G, Tarjan RE, Woods DR (1983) Notes on introductory combinatorics. Birkhäuser, Boston

    Book  Google Scholar 

  • Sauer K, Cogdell RJ, Prince SM, Freer A, Isaacs NW, Scheer H (1996) Structure-based calculations of the optical spectra of the LH2 bacteriochlorophyll-protein complex from Rhodopseudomonas acidophila. Photochem Photobiol 64:564–576

    Article  CAS  Google Scholar 

  • Severin K (2004) The advantage of being virtual: target-induced adaptation and selection in dynamic combinatorial libraries. Chem Eur J 10:2565–2580

    Article  CAS  PubMed  Google Scholar 

  • Soares ARM, Thanaiah Y, Taniguchi M, Lindsey JS (2013) Aqueous-membrane partitioning of β-substituted porphyrins encompassing diverse polarity. New J Chem 37:1087–1097

    Article  CAS  Google Scholar 

  • Tadros MH, Waterkamp K (1989) Multiple copies of the coding regions for the light-harvesting B800–850 α- and β-polypeptides are present in the Rhodopseudomonas palustris genome. EMBO J 8:1303–1308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tadros MH, Katsiou E, Hoon MA, Yurkova N, Ramji DP (1993) Cloning of a new antenna gene cluster and expression analysis of the antenna gene family of Rhodopseudomonas palustris. Eur J Biochem 217:867–875

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Lindsey JS (2012) Enumeration of isomers of substituted tetrapyrrole macrocycles: from classical problems in biology to modern combinatorial libraries. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 23. World Scientific, Singapore, pp 1–80

    Google Scholar 

  • Taniguchi M, Du H, Lindsey JS (2011) Virtual libraries of tetrapyrrole macrocycles: combinatorics, isomers, product distributions, and data mining. J Chem Inf Model 51:2233–2247

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Soares ARM, Chandrashaker V, Lindsey JS (2012) A tandem combinatorial model for the prebiogenesis of diverse tetrapyrrole macrocycles. New J Chem 36:1057–1069

    Article  CAS  Google Scholar 

  • Taniguchi M, Du H, Lindsey JS (2013) Enumeration of virtual libraries of combinatorial modular macrocyclic (bracelet, necklace) architectures and their linear counterparts. J Chem Inf Model 53:2203–2216

    Article  CAS  PubMed  Google Scholar 

  • Tharia HA, Nightingale TD, Papiz MZ, Lawless AM (1999) Characterisation of hydrophobic peptides by RP-HPLC from different spectral forms of LH2 isolated from Rps. palustris. Photosynth Res 61:157–167

    Article  CAS  Google Scholar 

  • Zuber H, Codgell RJ (1995) Structure and organization of purple bacterial antenna complexes. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 315–348

    Google Scholar 

Download references

Acknowledgments

This research was carried out as part of the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0001035.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masahiko Taniguchi, Richard J. Cogdell or Jonathan S. Lindsey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taniguchi, M., Henry, S., Cogdell, R.J. et al. Statistical considerations on the formation of circular photosynthetic light-harvesting complexes from Rhodopseudomonas palustris . Photosynth Res 121, 49–60 (2014). https://doi.org/10.1007/s11120-014-9975-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-9975-x

Keywords

Navigation