Skip to main content

Advertisement

Log in

Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

During the last few years, intensive research efforts have been directed toward the application of several highly efficient light-harvesting photosynthetic proteins, including reaction centers (RCs), photosystem I (PSI), and photosystem II (PSII), as key components in the light-triggered generation of fuels or electrical power. This review highlights recent advances for the nano-engineering of photo-bioelectrochemical cells through the assembly of the photosynthetic proteins on electrode surfaces. Various strategies to immobilize the photosynthetic complexes on conductive surfaces and different methodologies to electrically wire them with the electrode supports are presented. The different photoelectrochemical systems exhibit a wide range of photocurrent intensities and power outputs that sharply depend on the nano-engineering strategy and the electroactive components. Such cells are promising candidates for a future production of biologically-driven solar power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A:

Acceptor

BOD:

Bilirubin oxidase

CNT:

Carbon nanotube

cyt:

Cytochrome

D:

Donor

DCPIP:

2,6-Dichlorophenolindophenol

DSSC:

Dye-sensitized solar cell

ET:

Electron transfer

FTO:

Fluorine-doped tin oxide

ITO:

Indium tin oxide

LH1:

Light-harvesting 1 pigment protein

LHC:

Light-harvesting complexes

MV2+ :

N,N′-Dimethyl-4,4′-bipyridinium, methyl viologen

NC:

Nanocluster

NHE:

Normal hydrogen electrode

NP:

Nanoparticle

NTA:

Nitrilo triacetic acid

NQS:

1,4-Naphthoquinone-2-sulfonate

PC:

Plastocyanine

pMBQ:

Poly-mercapto benzoquinone

PSI:

Photosystem I

PSII:

Photosystem II

RC:

Reaction center

SCE:

Standard calomel electrode

SWCNT:

Single-walled carbon nanotube

TMPD:

N,N,N′,N′-Tetramethyl-p-phenylenediamine

References

  • Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987a) Structure of the reaction center from Rhodobacter sphaeroides R-26—the cofactors. Proc Natl Acad Sci USA 84:5730–5734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987b) Structure of the reaction center from Rhodobacter sphaeroides R-26—the protein subunits. Proc Natl Acad Sci USA 84:6162–6166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Almog O, Shoham G, Michaeli D, Nechushtai R (1991) Monomeric and trimeric forms of photosystem I reaction center of Mastigocladus laminosus: crystallization and preliminary characterization. Proc Natl Acad Sci USA 88:5316–5321

    Google Scholar 

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 angstrom resolution. Nature 447:58–63

    Article  CAS  PubMed  Google Scholar 

  • Badura A, Guschin D, Esper B, Kothe T, Neugebauer S, Schuhmann W, Roegner M (2008) Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. Electroanalysis 20:1043–1047

    Article  CAS  Google Scholar 

  • Badura A, Guschin D, Kothe T, Kopczak MJ, Schuhmann W, Rögner M (2011a) Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels. Energy Environ Sci 4:2435–2440

    Article  CAS  Google Scholar 

  • Badura A, Kothe T, Schuhmann W, Roegner M (2011b) Wiring photosynthetic enzymes to electrodes. Energy Environ Sci 4:3263–3274

    Article  CAS  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2004) Light-harvesting features revealed by the structure of plant photosystem I. Photosynth Res 81:239–250

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  CAS  PubMed  Google Scholar 

  • Boucher N, Carpentier R (1992) Generation of photocurrents by a chloroplast photosystem-I submembrane fraction using the Mehler reaction. Electrochim Acta 37:2581–2585

    Article  CAS  Google Scholar 

  • Brettel K (1988) Electron-transfer from A1 to an iron–sulfur center with t 1/2 = 200 ns at room-temperature in photosystem I—characterization by flash absorption spectroscopy. FEBS Lett 239:93–98

    Article  CAS  Google Scholar 

  • Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta Bioenerg 1318:322–373

    Article  CAS  Google Scholar 

  • Brettel K, Leibl W (2001) Electron transfer in photosystem I. Biochim Biophys Acta Bioenerg 1507:100–114

    Article  CAS  Google Scholar 

  • Broser M, Gabdulkhakov A, Kern J, Guskov A, Mueh F, Saenger W, Zouni A (2010) Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-angstrom resolution. J Biol Chem 285:26255–26262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calvin M (1976) Photosynthesis as a resource for energy and materials. Photochem Photobiol 23:425–444

    Article  CAS  PubMed  Google Scholar 

  • Carmeli I, Frolov L, Carmeli C, Richter S (2007) Photovoltaic activity of photosystem I-based self-assembled monolayer. J Am Chem Soc 129:12352–12353

    Article  CAS  PubMed  Google Scholar 

  • Chen HM, Chen CK, Liu R-S, Zhang L, Zhang J, Wilkinson DP (2012) Nano-architecture and material designs for water splitting photoelectrodes. Chem Soc Rev 41:5654–5671

    Article  CAS  PubMed  Google Scholar 

  • Ciesielski P, Faulkner C, Irwin M, Gregory J, Tolk N, Cliffel D, Jennings G (2010a) Enhanced photocurrent production by photosystem I multilayer assemblies. Adv Funct Mater 20:4048–4054

    Article  CAS  Google Scholar 

  • Ciesielski PN, Hijazi FM, Scott AM, Faulkner CJ, Beard L, Emmett K, Rosenthal SJ, Cliffel D, Jennings GK (2010b) Photosystem I-based biohybrid photoelectrochemical cells. Bioresour Technol 101:3047–3053

    Article  CAS  PubMed  Google Scholar 

  • Ciesielski PN, Cliffel DE, Jennings GK (2011) Kinetic model of the photocatalytic effect of a photosystem I monolayer on a planar electrode surface. J Phys Chem A 115:3326–3334

    Article  CAS  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure-analysis of a membrane–protein complex—electron-density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180:385–398

    Article  CAS  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624

    Article  CAS  PubMed  Google Scholar 

  • Dismukes GC, Blankenship RE (2005) The origin and evolution of photosynthetic oxygen production. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 683–695

    Google Scholar 

  • Duysens LNM (1952) Transfer of excitation energy in photosynthesis. Thesis, State University Utrecht, Utrecht

  • Efrati A, Yehezkeli O, Tel-Vered R, Michaeli D, Nechushtai R, Willner I (2012) Electrochemical switching of photoelectrochemical processes at CdS QDs and photosystem I-modified electrodes. ACS Nano 6:9258–9266

    Article  CAS  PubMed  Google Scholar 

  • Erabi T, Matsumoto K, Itoh H, Takahashi N, Fujimura K, Hayase S, Wada M (1997) Generation of cathodic photocurrent by photosynthetic reaction center complexes from Rhodospirillum rubrum at a Pt electrode. Denki Kagaku 65:673–675

    CAS  Google Scholar 

  • Esper B, Badura A, Rogner M (2006) (Photosynthesis as a power supply for (bio-) hydrogen production. Trends Plant Sci 11:543–549

    Article  CAS  PubMed  Google Scholar 

  • Feher G, Allen JP, Okamura MY, Rees DC (1989) Structure and function of bacterial photosynthetic reaction centers. Nature 339:111–116

    Article  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Frolov L, Wilner O, Carmeli C, Carmeli I (2008) Fabrication of oriented multilayers of photosystem I proteins on solid surfaces by auto-metallization. Adv Mater 20:263–266

    Article  CAS  Google Scholar 

  • Graige MS, Paddock ML, Bruce JM, Feher G, Okamura MY (1996) Mechanism of proton-coupled electron transfer for quinone (QB) reduction in reaction centers of Rb. sphaeroides. J Am Chem Soc 118:9005–9016

    Article  CAS  Google Scholar 

  • Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  CAS  PubMed  Google Scholar 

  • Gratzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153

    Article  CAS  Google Scholar 

  • Gratzel M (2011) Future development of technology in dye-sensitized solar cells. Electrochemistry 79:760

    Article  Google Scholar 

  • Greenbaum E (1985) Platinized chloroplasts: a novel photocatalytic material. Science 230:1373–1375

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum E (1990) Vectorial photocurrents and photoconductivity in metalized chloroplasts. J Phys Chem 94:6151–6153

    Article  CAS  Google Scholar 

  • Grimme R, Lubner C, Golbeck J (2009) Maximizing H2 production in photosystem I/dithiol molecular wire/platinum nanoparticle bioconjugates. Dalton Trans 10106–10113

  • Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42:1890–1898

    Article  CAS  PubMed  Google Scholar 

  • Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  PubMed  Google Scholar 

  • Ham M-H, Choi JH, Boghossian AA, Jeng ES, Graff RA, Heller DA, Chang AC, Mattis A, Bayburt TH, Grinkova YV, Zeiger AS, Van Vliet KJ, Hobbie EK, Sligar SG, Wraight CA, Strano MS (2010) Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat Chem 2:929–936

    Article  CAS  PubMed  Google Scholar 

  • Hambourger M, Liddell PA, Gust D, Moore AL, Moore TA (2007) Parameters affecting the chemical work output of a hybrid photoelectrochemical biofuel cell. Photochem Photobiol Sci 6:431–437

    Article  CAS  PubMed  Google Scholar 

  • Hammarström L (2003) Towards artificial photosynthesis: ruthenium–manganese chemistry mimicking photosystem II reactions. Curr Opin Chem Biol 7:666–673

    Article  CAS  PubMed  Google Scholar 

  • Heller A (2006) Electron-conducting redox hydrogels: design, characteristics and synthesis. Curr Opin Chem Biol 10:664–672

    Article  CAS  PubMed  Google Scholar 

  • Hollander MD, Magis JG, Fuchsenberger P, Aartsma TJ, Jones MR, Frese RN (2011) Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein–gold interactions. Langmuir 27:10282–10294

    Article  CAS  Google Scholar 

  • Imahori H, Mori Y, Matano J (2003) Nanostructured artificial photosynthesis. J Photochem Photobiol C 4:51–83

    Article  CAS  Google Scholar 

  • Iwuchukwu IJ, Vaughn M, Myers N, O’Neill H, Frymier P, Bruce BD (2010) Self-organized photosynthetic nanoparticle for cell-free hydrogen production. Nat Nanotechnol 5:73–79

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Cardona T, Rutherford AW, Reisner E (2012) Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium-tin oxide electrode. J Am Chem Soc 134:8332–8335

    Google Scholar 

  • Kirmaier C, Holten D (1987) Primary photochemistry of reaction centers from the photosynthetic purple bacteria. Photosynth Res 13:225–230

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Iida K, Dewa T, Tanaka H, Ogawa T, Nagashima S, Nagashima KVP, Shimada K, Hashimoto H, Gardiner AT, Cogdell RJ, Nango M (2012) Photocurrent and electronic activities of oriented-his-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode. Biomacromolecules 13:432–438

    Article  CAS  PubMed  Google Scholar 

  • Lam K, Irwin E, Healy K, Lin L (2006) Bioelectrocatalytic self-assembled thylakoids for micro-power and sensing applications. Sens Actuators B 117:480–487

    Article  CAS  Google Scholar 

  • LaVan D, Cha DA (2006) Approaches for biological and biomimetic energy conversion. Proc Natl Acad Sci USA 103:5251–5255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lebedev N, Trammell SA, Spano A, Lukashev E, Griva I, Schnur J (2006) Conductive wiring of immobilized photosynthetic reaction center to electrode by cytochrome c. J Am Chem Soc 128:12044–12045

    Article  CAS  PubMed  Google Scholar 

  • Lebedev N, Trammell SA, Tsoi S, Spano A, Kim JH, Xu J, Twigg ME, Schnur JM (2008) Increasing efficiency of photoelectronic conversion by encapsulation of photosynthetic reaction center proteins in arrayed carbon nanotube electrode. Langmuir 24:198871–198876

    Article  CAS  Google Scholar 

  • Lubner C, Knorzer P, Silva P, Vincent K, Happe T, Bryant D, Golbeck J (2010) Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry 49:10264–10266

    Article  CAS  PubMed  Google Scholar 

  • Maly J, Masojidek J, Masci A, Ilie M, Cianci E, Foglietti V, Vastarella W, Pilloton R (2005) Direct mediatorless electron transport between the monolayer of photosystem II and poly (mercapto-p-benzoquinone) modified gold electrode—new design of biosensor for herbicide detection. Biosens Bioelectron 21:923–932

    Article  CAS  PubMed  Google Scholar 

  • Mershin A, Matsumoto K, Kaiser L, Yu D, Vaughn M, Nazeeruddin M, Bruce B, Graetzel M, Zhang S (2012) Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci Rep 2:234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millsaps JF, Bruce BD, Lee JW, Greenbaum E (2001) Nanoscale photosynthesis: photocatalytic production of hydrogen by platinized photosystem I reaction centers. J Photochem Photobiol 73:630–635

    Article  CAS  Google Scholar 

  • Okamura MY, Feher G (1992) Proton-transfer in reaction centers from photosynthetic bacteria. Annu Rev Biochem 61:861–896

    Article  CAS  PubMed  Google Scholar 

  • Okamura MY, Isaacson RA, Feher G (1975) Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas spheroides. Proc Natl Acad Sci USA 72:3491–3495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okamura MY, Paddock ML, Graige MS, Feher G (2000) Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta Bioenerg 1458:148–163

    Article  CAS  Google Scholar 

  • Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  CAS  Google Scholar 

  • Paddock ML, Rongey SH, Feher G, Okamura MY (1989) Pathway of proton-transfer in bacterial reaction centers—replacement of glutamic-acid 212 in the l-subunit by glutamine inhibits quinone (secondary acceptor) turnover. Proc Natl Acad Sci USA 86:6602–6606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paddock ML, Feher G, Okamura MY (2003) Proton transfer pathways and mechanism in bacterial reaction centers. FEBS Lett 555:45–50

    Article  CAS  PubMed  Google Scholar 

  • Parson WW, Warshel A (2009) Mechanism of charge separation in purple bacterial reaction centers. Advances in photosynthesis and respiration. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) Advances in photosynthesis and respiration: the purple phototrophic bacteria, vol 28. Springer, Dordrecht, pp 355–377

    Chapter  Google Scholar 

  • Reed DW, Clayton RK (1968) Isolation of a reaction center fraction from Rhodopseudomonas spheroides. Biochem Biophys Res Commun 30:471–475

    Article  CAS  PubMed  Google Scholar 

  • Rivalta I, Brudvig GW, Batista VS (2012) Oxomanganese complexes for natural and artificial photosynthesis. Curr Opin Chem Biol 16:8–11

    Article  CAS  Google Scholar 

  • Stowell MHB, Mcphillips TM, Rees DC, Soltis SM, Abresch E, Feher G (1997) Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron–proton transfer. Science 276:812–816

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Hammarström L, Åkermark B, Styring S (2001) Towards artificial photosynthesis: ruthenium–manganese chemistry for energy production. Chem Soc Rev 30:36–49

    Article  CAS  Google Scholar 

  • Sykora M, Maxwell KA, DeSimone JM, Meyer TJ (2000) Mimicking the antenna-electron transfer properties of photosynthesis. Proc Natl Acad Sci USA 97:7687–7691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan SC, Crouch LI, Jones MR, Welland M (2012) Generation of alternating current in response to discontinuous illumination by photoelectrochemical cells based on photosynthetic proteins. Angew Chem Int Ed 51:6667–6671

    Article  CAS  Google Scholar 

  • Terasaki N, Yamamoto N, Hiraga T, Sato I, Inoue Y, Yamada S (2006) Fabrication of novel photosystem I–gold nanoparticle hybrids and their photocurrent enhancement. Thin Solid Films 499:153–156

    Article  CAS  Google Scholar 

  • Terasaki N, Yamamoto N, Tamada K, Hattori M, Hiraga T, Tohri A, Sato I, Iwai M, Taguchi S, Enami I, Inoue Y, Yamanoi Y, Yonezawa T, Mizuno K, Murata M, Nishihara H, Yoneyama S, Minakata M, Ohmori T, Sakai M, Fujii M (2007) Bio-photo sensor: cyanobacterial photosystem I coupled with transistor via molecular wire. Biochim Biophys Acta Bioenerg 1767:653–659

    Article  CAS  Google Scholar 

  • Terasaki N, Iwai M, Yamamoto N, Hiraga T, Yamada S, Inoue Y (2008) Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode. Thin Solid Films 516:2553–2557

    Article  CAS  Google Scholar 

  • Terasaki N, Yamamoto N, Hiraga T, Yamanoi Y, Yonezawa T, Nishihara H, Ohmori T, Sakai M, Fujii M, Tohri A, Iwai M, Inoue Y, Yoneyama S, Minakata M, Enami I (2009) Plugging a molecular wire into photosystem I: reconstitution of the photoelectric conversion system on a gold electrode. Angew Chem Int Ed 48:1585–1587

    Article  CAS  Google Scholar 

  • Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    Article  CAS  PubMed  Google Scholar 

  • Toporik H, Carmeli I, Volotsenko I, Molotskii M, Rosenwaks Y, Carmeli C, Nelson N (2012) Large photovoltages generated by plant photosystem I crystals. Adv Mater 24:2988–2991

    Article  CAS  PubMed  Google Scholar 

  • Trammell SA, Wang L, Zullo JM, Shashidhar R, Lebedev N (2004) Orientated binding of photosynthetic reaction centers on gold using Ni–NTA self-assembled monolayers. Nano Lett 19:1649–1655

    CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 angstrom. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Utschig LM, Dimitrijevic NM, Poluektov OG, Chemerisov SD, Mulfort KL, Tiede DM (2011) Photocatalytic hydrogen production from noncovalent biohybrid photosystem I/Pt nanoparticle complexes. J Phys Chem Lett 2:236–241

    Article  CAS  Google Scholar 

  • Wang F, Liu X, Willner I (2012) Integration of photoswitchable proteins, photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for optobioelectronic applications. Adv Mater. doi:10.1002/adma.201201772

    Google Scholar 

  • Williams JC, Feher G, Simon MI (1983a) Sequencing of the gene encoding the m-subunit of the reaction center of Rhodopseudomonas sphaeroides. Biophys J 41:122–128

    Google Scholar 

  • Williams JC, Steiner LA, Ogden RC, Simon MI, Feher G (1983b) Primary structure of the M-subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 80:6505–6509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams JC, Steiner LA, Feher G, Simon MI (1984) Primary structure of the l-subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 81:7303–7307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willner B, Katz E, Willner I (2006) Electrical contacting of redox proteins by nanotechnological means. Curr Opin Biotechnol 17:589–596

    Article  CAS  PubMed  Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer M, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra V (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yehezkeli O, Yan Y-M, Baravik I, Tel-Vered R, Willner I (2009) Integrated oligoaniline-cross-linked composites of au nanoparticles/glucose oxidase electrodes: a generic paradigm for electrically contacted enzyme systems. Chem Eur J 15:2674–2679

    Article  CAS  PubMed  Google Scholar 

  • Yehezkeli O, Ovits O, Tel-Vered R, Raichlin S, Willner I (2010a) Reconstituted enzymes on electropolymerizable FAD-modified metallic nanoparticles: functional units for the assembly of effectively “wired” enzyme electrodes. Electroanalysis 22:1817–1823

    Article  CAS  Google Scholar 

  • Yehezkeli O, Wilner OI, Tel-Vered R, Roizman-Sade D, Nechushtai R, Willner I (2010b) Generation of photocurrents by bis-aniline-cross-linked Pt nanoparticle/photosystem I composites on electrodes. J Phys Chem B 114:14383–14388

    Article  CAS  PubMed  Google Scholar 

  • Yehezkeli O, Tel-Vered R, Wasserman J, Trifonov A, Michaeli D, Nechushtai R, Willner I (2012) Integrated photosystem II-based photo-bioelectrochemical cells. Nat Commun 3:742

    Article  CAS  PubMed  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 angstrom resolution. Nature 409:739–743

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The support of the photo-bioelectrochemical project by the Minerva Foundation is gratefully acknowledged. O.Y. acknowledges the Levi Eshkol fellowship, The Ministry of Science and Technology, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Nechushtai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yehezkeli, O., Tel-Vered, R., Michaeli, D. et al. Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells. Photosynth Res 120, 71–85 (2014). https://doi.org/10.1007/s11120-013-9796-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9796-3

Keywords

Navigation