Skip to main content

Advertisement

Log in

Photosynthetic energy storage efficiency in Chlamydomonas reinhardtii, based on microsecond photoacoustics

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Using a novel, pulsed micro-second time-resolved photoacoustic (PA) instrument, we measured thermal dissipation and energy storage (ES) in the intact cells of wild type (WT) Chlamydomonas reinhardtii, and mutants lacking either PSI or PSII reaction centers (RCs). On this time scale, the kinetic contributions of the thermal expansion component due to heat dissipation of absorbed energy and the negative volume change due to electrostriction induced by charge separation in each of the photosystems could be readily distinguished. Kinetic analysis revealed that PSI and PSII RCs exhibit strikingly different PA signals where PSI is characterized by a strong electrostriction signal and a weak thermal expansion component while PSII has a small electrostriction component and large thermal expansion. The calculated ES efficiencies at ~10 μs were estimated to be 80 ± 5 and 50 ± 13% for PSII-deficient mutants and PSI-deficient mutants, respectively, and 67 ± 2% for WT. The overall ES efficiency was positively correlated with the ratio of PSI to PSI + PSII. Our results suggest that the shallow excitonic trap in PSII limits the efficiency of ES as a result of an evolutionary frozen metabolic framework of two photosystems in all oxygenic photoautotrophs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arata H, Parson WW (1981) Enthalpy and volume changes accompanying electron transfer from P-870 to quinones in Rhodopseudomonas sphaeroides reaction centers. Biochim Biophys Acta 636:70–81. doi:10.1016/0005-2728(81)90077-3

    Article  PubMed  CAS  Google Scholar 

  • Bell AG (1880) On the production and reproduction of sound by light: the photophone. Am J Sci 20:305–324

    Google Scholar 

  • Boichenko VA, Hou JM, Mauzerall DC (2001) Thermodynamics of electron transfer in oxygenic photosynthetic reaction centers: volume change, enthalpy, and entropy of electron-transfer reactions in the intact cells of the cyanobacterium Synechocystis PCC 6803. Biochemistry 40:7126–7132. doi:10.1021/bi010374k

    Article  PubMed  CAS  Google Scholar 

  • Borsarelli C, Braslavsky SE (1998) Volume changes correlate with enthalpy changes during the photoinduced formation of the 3MLCT state of ruthenium(II) bipyridine cyano complexes in the presence of salts. A case of the entropy–enthalpy compensation effect. J Phys Chem B 102:6231–6238. doi:10.1021/jp981235o

    Article  CAS  Google Scholar 

  • Borsarelli C, Braslavsky SE (1999) Enthalpy, volume, and entropy changes associated with the electron transfer reaction between the 3MLCT state of Ru(Bpy) 2+3 and methyl viologen cation in aqueous solutions. J Phys Chem A 103:1719–1727. doi:10.1021/jp984201

    Article  CAS  Google Scholar 

  • Braslavsky SE, Heibel GE (1992) Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution. Chem Rev 92:1381–1410. doi:10.1021/cr00014a007

    Article  CAS  Google Scholar 

  • Brettel K (1997) Electron transfer and redox-cofactors in photosystem I. Biochim Biophys Acta 1318:322–373

    Article  CAS  Google Scholar 

  • Bruce D, Salehian O (1992) Laser-induced optoacoustic calorimetry of cyanobacteria. The efficiency of primary photosynthetic processes on state 1 and state 2. Biochim Biophys Acta Bioenerg 1100:242–250. doi:10.1016/0167-4838(92)90478-V

    Article  CAS  Google Scholar 

  • Brumfeld V, Nagyt L, Kiss V, Malkin S (1999) Wide-frequency hydrophone detection of laser-induced photoacoustic signals in photosynthesis. Photochem Photobiol 70:607–615. doi:10.1111/j.1751-1097.1999.tb08259.x

    Article  CAS  Google Scholar 

  • Cahen D, Malkin S, Lerner EI (1978) Photoacoustic spectroscopy of chloroplast membranes: listening to photosynthesis. FEBS Lett 91:339–342

    Article  PubMed  CAS  Google Scholar 

  • Callis JB, Parson WW, Goutermann MM (1972) Fast changes of enthalpy and volume on flash excitation of chromatium chromatophores. Biochim Biophys Acta 267:348–362. doi:10.1016/0005-2728(72)90122-3

    Article  PubMed  CAS  Google Scholar 

  • Canaani O, Malkin S, Mauzerall D (1988) Pulsed photoacoustic detection of flash-induced oxygen evolution from intact leaves and its oscillations. Proc Natl Acad Sci USA 85:4725–4729

    Article  PubMed  CAS  Google Scholar 

  • Cha Y, Mauzerall DC (1992) Energy storage of linear and cyclic electron flows in photosynthesis. Plant Physiol 100:1869–1877. doi:10.1104/pp.100.4.1869

    Article  PubMed  CAS  Google Scholar 

  • Charlebois DO, Mauzerall DC (1999) Energy storage and optical cross-section of PSI in the cyanobacterium Synechococcus PCC 7002 and a psaE mutant. Photosynth Res 59:27–38. doi:10.1023/A:1006199618668

    Article  CAS  Google Scholar 

  • Delosme R (1998) Wavelength dependence of the quantum yield of charge separation in photosynthesis: photoacoustic study of light energy distribution among various pigment complexes. Israel J Chem 38:237–246

    CAS  Google Scholar 

  • Delosme R (2003) On some aspects of photosynthesis revealed by photoacoustic studies: a critical evaluation. Photosynth Res 76:289–301. doi:10.1023/A:1024977623828

    Article  PubMed  CAS  Google Scholar 

  • Delosme R, Béal D, Joliot P (1994) Photoacoustic detection of flash-induced charge separation in photosynthetic systems: spectral dependence of the quantum yield. Biochim Biophys Acta Bioenerg 11:56–64. doi:10.1016/0005-2728(94)90193-7

    Article  Google Scholar 

  • Diner BA (2001) Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. Biochim Biophys Acta 1503:147–163. doi:10.1016/S0005-2728(00)00220-6

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Babcock GT (1996) Structure, dynamics, and energy conversion efficiency in photosystem II. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, pp 213–247

    Google Scholar 

  • Edens GJ, Gunner MR, Xu G, Mauzerall DC (2000) The enthalpy and entropy of reaction for formation of P+ QA− from excited reaction centers of Rhodobacter sphaeroides. J Am Chem Soc 122:1479–1485. doi:10.1021/ja991791b

    Article  CAS  Google Scholar 

  • Feitelson J, Mauzerall DC (1993) Wide band time resolved photoacoustic study of electron transfer reactions: difference between measured enthalpy and redox free energies. J Phys Chem 97:8410–8413. doi:10.1021/j100004a00

    Article  CAS  Google Scholar 

  • Fork DC, Herbert SK (1993) The application of photoacoustic techniques to studies of photosynthesis. Photochem Photobiol 57:207–220. doi:10.1111/j.1751-1097.1993.tb02277.x

    Article  CAS  Google Scholar 

  • Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 319–360

    Google Scholar 

  • Herbert SK, Han T, Vogelmann TC (2000) New applications of photoacoustics to the study of photosynthesis. Photosynth Res 66:13–31. doi:10.1023/A:1010788504886

    Article  PubMed  CAS  Google Scholar 

  • Hou JM, Boichenko VA, Diner BA, Mauzerall DC (2001a) Thermodynamics of electron transfer in oxygenic photosynthetic reaction centers: volume change, enthalpy, and entropy of electron-transfer reactions in manganese-depleted photosystem II core complexes. Biochemistry 40:7117–7125. doi:10.1021/bi010373s

    Article  PubMed  CAS  Google Scholar 

  • Hou JM, Boichenko VA, Wang YC, Chitnis PR, Mauzerall DC (2001b) Thermodynamics of electron transfer in oxygenic photosynthetic reaction centers: a pulsed photoacoustic study of electron transfer in photosystem I reveals a similarity to bacterial reaction centers in both volume change and entropy. Biochemistry 40:7109–7116. doi:10.1021/bi0103720

    Article  PubMed  CAS  Google Scholar 

  • Kolbowski J, Reising H, Schreiber U (1990) Computer controlled pulse modulation system for analysis of photoacoustic signals in the time domain. Photosynth Res 25:309–316. doi:10.1007/BF00033172

    Article  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. doi:10.1146/annurev.pp.42.060191.001525

    Article  CAS  Google Scholar 

  • Lancaster CRD, Bibikova MV, Sabatino P, Oesterhelt D, Michel H (2000) Structural basis of the drastically increased initial electron transfer rate in the reaction center from a Rhodopseudomonas viridis mutant described at 2.00-Å resolution. J Biol Chem 275:39364–39368. doi:10.1074/jbc.M008225200

    Article  PubMed  CAS  Google Scholar 

  • Lasser-Ross N, Malkin S, Cahen D (1980) Photoacoustic detection of photosynthetic activities in isolated broken chloroplasts. Biochim Biophys Acta 593:330–341. doi:10.1016/0005-2728(80)90070-5

    Article  PubMed  CAS  Google Scholar 

  • Losi A, Braslavsky SE, Gartner W, Spudich JL (1999) Time-resolved absorption and photothermal measurements with sensory rhodopsin I from Halobacterium salinarum. Biophys J 76:2183–2191. doi:10.1016/S0006-3495(99)77373-X

    Article  PubMed  CAS  Google Scholar 

  • Malkin S (1996) The photoacoustic method in photosynthesis-monitoring and analysis of phenomena which lead to pressure changes following light excitation. In: Amesz J, Hoff A (eds) Biophysical techniques in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 191–206

    Google Scholar 

  • Malkin S, Cahen D (1979) Photoacoustic spectroscopy and radiant energy conversion: theory of the effect with special emphasis on photosynthesis. Photochem Photobiol 29:803–813. doi:10.1111/j.1751-1097.1979.tb07770.x

    Article  Google Scholar 

  • Malkin S, Canaani O (1994) The use and characteristics of the photoacoustic method in the study of photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:493–526. doi:10.1146/annurev.pp.45.060194.002425

    Article  CAS  Google Scholar 

  • Mauzerall DC (1990) Determination of oxygen emission and uptake by pulsed, time resolved photoacoustics. Plant Physiol 94:278–283. doi:10.1104/pp.94.1.278

    Article  PubMed  CAS  Google Scholar 

  • Mauzerall DC, Feitelson J, Prince R (1995a) Wide band, time-resolved photoacoustic study of electron transfer reactions: difference between measured enthalpies and redox free energies. J Phys Chem 99:1090–1093. doi:10.1021/j100004a006

    Article  CAS  Google Scholar 

  • Mauzerall DC, Gunner MR, Zhang JW (1995b) Volume contraction on photoexcitation of the reaction center from Rhodobacter sphaeroides R-26: internal probe of dielectrics. Biophys J 68:275–280. doi:10.1016/S0006-3495(95)80185-2

    Article  PubMed  CAS  Google Scholar 

  • Mauzerall DC, Feitelson J, Dubinsky Z (1998) Discriminating between phytoplankton taxa by photoacoustics. Israel J Chem 38:257–260

    CAS  Google Scholar 

  • Mauzerall DC, Hou JM, Boichenko V (2002) Volume changes and electrostriction in the primary photoreactions of various photosynthetic systems: estimation of dielectric coefficient in bacterial reaction centers and of the observed volume changes with the Drude–Nernst equation. Photosynth Res 74:173–180. doi:10.1023/A:1020903525973

    Article  PubMed  CAS  Google Scholar 

  • McClean MA, Di Primo C, Deprez E, Hoa GHB, Sligar SG (1998) Photoacoustic calorimetry of proteins. Methods Enzymol 295:316–330

    Article  Google Scholar 

  • Michel H, Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. Biochemistry 27:1–7. doi:10.1021/bi00401a001

    Article  CAS  Google Scholar 

  • Mimuro M, Murakami A, Fujita Y (1982) Studies on spectral characteristics of allophycocyanin isolated from Anabaena cylindrica: curve-fitting analysis. Arch Biochem Biophys 215:266–273. doi:10.1016/0003-9861(82)90304-6

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux CW, Griebenow S, Braslavsky SE (1991) Photosynthetic energy storage in cyanobacterial cells adapted to light-states 1 and 2. A laser-induced optoacoustic study. Biochim Biophys Acta 1060:315–318. doi:10.1016/S0005-2728(05)80323-8

    Article  CAS  Google Scholar 

  • Murakami A (1997) Quantitative analysis of 77 K fluorescence emission spectra in Synechocystis sp. PCC 6714 and Chlamydomonas reinhardtii with variable PS I/PS II stoichiometries. Photosynth Res 53:141–148. doi:10.1023/A:1005818317797

    Article  CAS  Google Scholar 

  • Murakami A, Fujital Y, Nemson JA, Melis A (1997) Chromatic regulation in Chlamydomonas reinhardtii: time course of photosystem stoichiometry adjustment following a shift in growth light quality. Plant Cell Physiol 38:188–193

    CAS  Google Scholar 

  • Murata N, Nishimura M, Takamiya A (1966) Fluorescence of chlorophyll in photosynthetic systems. III. Emission and action spectra of fluorescence—three emission bands of chlorophyll a and the energy transfer between two pigment systems. Biochim Biophys Acta 126:234–243. doi:10.1016/0926-6585(66)90059-8

    Article  PubMed  CAS  Google Scholar 

  • Nilsson F, Simpson DJ, Jansson C, Andersson B (1992) Ultrastructural and biochemical characterization of a Synechocystis 6803 mutant with inactivated psbA genes. Arch Biochim Biophys 295:340–347. doi:10.1016/0003-9861(92)90526-3

    Article  CAS  Google Scholar 

  • Nitsch C, Braslavsky SE, Schatz GH (1988) Laser-induced calorimetry of primary processes in isolated photosystem I and photosystem II particles. Biochim Biophys Acta 934:201–212. doi:10.1016/0005-2728(88)90183-1

    Article  CAS  Google Scholar 

  • Nugent JHA (1996) Oxygenic photosynthesis: electron transfer in photosystem I and photosystem II. Eur J Biochem 237:519–531. doi:10.1111/j.1432-1033.1996.00519.x

    Article  PubMed  CAS  Google Scholar 

  • Paltauf G, Nuster R, Haltmeier M, Burgholzer P (2007) Photoacoustic tomography using a Mach Zehnder interferometer as an acoustic line detector. Appl Opt 46:3352–3358. doi:10.1364/AO.46.003352

    Article  PubMed  Google Scholar 

  • Polle JEW, Benemann JR, Tanaka A, Melis A (2000) Photosynthetic apparatus organization and function in wild type and a Chl b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source. Planta 211(3):335–344. doi:10.1007/s004250000279

    Google Scholar 

  • Santabarbara S, Galuppini L, Casazza AP (2010) Bidirectional electron transfer in the reaction centre of photosystem I. J Integr Plant Biol 52:735–749. doi:10.1111/j.1744-7909.2010.00977.x

    Article  PubMed  CAS  Google Scholar 

  • Satoh K (1980) F-695 emission from the purified photosystem II chlorophyll a-protein complex. FEBS Lett 110:53–56

    Article  CAS  Google Scholar 

  • Shen G, Vermaas WFJ (1994) Chlorophyll in a Synechocystis sp. PCC 6803 mutant without photosystem I and photosystem II core complexes. Evidence for peripheral antenna chlorophylls in cyanobacteria. J Biol Chem 269:13904–13910

    PubMed  CAS  Google Scholar 

  • Sueoka N (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 46:83–91

    Article  PubMed  CAS  Google Scholar 

  • Tommos C, Babcock GT (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta 1458:199–219. doi:10.1016/S0005-2728(00)00069-4

    Article  PubMed  CAS  Google Scholar 

  • Trebst A (1986) The topology of the plastoquinone and herbicide binding peptides of photosystem II in the thylakoid membrane. Z Naturforsch 41c:240–245

    Google Scholar 

  • Wegewijs B, Paddon-Row MN, Braslavsky SE (1998) Volume change associated with large photoinduced dipole formation in a rigid donor–acceptor compound: new approach to optoacoustic volume determination. J Phys Chem A 102:8812–8818. doi:10.1021/jp982751h

    Article  CAS  Google Scholar 

  • Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77:041101-1–22. doi:10.1063/1.2195024

    Google Scholar 

  • Yeates TO, Komiya H, Rees DC, Allen JP, Feher G (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci USA 84:6438–6442

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Norbert Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 38 Å resolution. Nature 409:739–743. doi:10.1038/35055589

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the US Department of Defense via Strategic Environmental Research and Development Program, NASA, and US-Israel Bi-national Science Foundation, and Rutgers Graduate Fellowship (to CY). We appreciate two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Y. Gorbunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, C., Schofield, O., Dubinsky, Z. et al. Photosynthetic energy storage efficiency in Chlamydomonas reinhardtii, based on microsecond photoacoustics. Photosynth Res 108, 215–224 (2011). https://doi.org/10.1007/s11120-011-9682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9682-9

Keywords

Navigation