Skip to main content
Log in

Triplet state spectra and dynamics of peridinin analogs having different extents of π-electron conjugation

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The Peridinin-Chlorophyll a-Protein (PCP) complex has both an exceptionally efficient light-harvesting ability and a highly effective protective capacity against photodynamic reactions involving singlet oxygen. These functions can be attributed to presence of a substantial amount of the highly-substituted and complex carotenoid, peridinin, in the protein and the facts that the low-lying singlet states of peridinin are higher in energy than those of chlorophyll (Chl) a, but the lowest-lying triplet state of peridinin is below that of Chl a. Thus, singlet energy can be transferred from peridinin to Chl a, but the Chl a triplet state is quenched before it can sensitize the formation of singlet oxygen. The present investigation takes advantage of Chl a as an effective triplet state donor to peridinin and explores the triplet state spectra and dynamics of a systematic series of peridinin analogs having different numbers of conjugated carbon–carbon double bonds. The carotenoids investigated are peridinin, which has a C37 carbon skeleton and eight conjugated carbon–carbon double bonds, and three synthetic analogs: C33-peridinin, having two less double bonds than peridinin, C35-peridinin which has one less double bond than peridinin, and C39-peridinin which has one more double bond than peridinin. In this study, the behavior of the triplet state spectra and kinetics exhibited by these molecules has been investigated in polar and nonpolar solvents and reveals a substantial effect of both π-electron conjugated chain length and solvent environment on the spectral lineshapes. However, only a small dependence of these factors is observed on the kinetics of triplet energy transfer from Chl a and on carotenoid triplet state deactivation to the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HPLC:

High performance liquid chromatography

PCP:

Peridinin-Chlorophyll a-Protein

Chl a :

Chlorophyll a

References

  • Alexandre MTA, Lührs DC, van Stokkum IHM, Hiller R, Groot M-L, Kennis JTM, van Grondelle R (2007) Triplet state dynamics in peridinin-chlorophyll a-protein: a new pathway of photoprotection in LHCs? Biophys J 93:1–11

    Article  Google Scholar 

  • Antheunis DA, Schmidt J, Van der Waals JH (1974) Spin-forbidden radiationless processes in isoelectronic molecules: anthracene, acridine and phenazine. A study by microwave induced delayed phosphorescence. Mol Phys 27:1521–1541

    Article  CAS  Google Scholar 

  • Bautista JA, Connors RE, Raju BB, Hiller RG, Sharples FP, Gosztola D, Wasielewski MR, Frank HA (1999a) Excited state properties of peridinin: observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids. J Phys Chem B 103:8751–8758

    Article  CAS  Google Scholar 

  • Bautista JA, Hiller RG, Sharples FP, Gosztola D, Wasielewski M, Frank HA (1999b) Singlet and triplet energy transfer in the peridinin-chlorophyll a-protein from Amphidinium carterae. J Phys Chem A 103:2267–2273

    Article  CAS  Google Scholar 

  • Bonetti C, Alexandre MTA, Hiller RG, Kennis JTM, van Grondelle R (2009) Chl-a triplet quenching by peridinin in H-PCP and organic solvent revealed by step-scan FTIR time-resolved spectroscopy. Chem Phys 357:63–69

    Article  CAS  Google Scholar 

  • Burke M, Land EJ, McGarvey DJ, Truscott TG (2000) Carotenoid triplet state lifetimes. J Photochem Photobiol B 59:132–138

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee N, Niedzwiedzki DM, Aoki K, Kajikawa T, Katsumura S, Hashimoto H, Frank HA (2008) Effect of structural modifications on the spectroscopic properties and dynamics of the excited states of peridinin. Arch Biochem Biophys 483:146–155

    Article  PubMed  Google Scholar 

  • Clarke RH, Connors RE, Schaafsma TJ, Kleibeuker JF, Platenkamp RJ (1976) The triplet state of chlorophylls. J Am Chem Soc 98:3674–3677

    Article  CAS  Google Scholar 

  • Damjanovic A, Vaswani HM, Fleming GR, Fromme P (2002) Chlorophyll excitations in Photosystem I as revealed by semi-empirical ZINDO/CIS calculations. Biophys J 82:293A–293A

    Google Scholar 

  • Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–860

    Article  CAS  Google Scholar 

  • Di Valentin M, Ceola S, Agostini G, Giacometti GM, Angerhofer A, Crescenzi O, Barone V, Carbonera D (2008a) Pulse ENDOR and density functional theory on the peridinin triplet state involved in the photo-protective mechanism in the peridinin-chlorophyll a-protein from Amphidinium carterae. Biochim Biophys Acta-Bioenerg 1777:295–307

    Article  Google Scholar 

  • Di Valentin M, Ceola S, Salvadori E, Agostini G, Carbonera D (2008b) Identification by time-resolved EPR of the peridinins directly involved in chlorophyll triplet quenching in the peridinin-chlorophyll a-protein from Amphidinium carterae. Biochim Biophys Acta-Bioenerg 1777:186–195

    Article  CAS  Google Scholar 

  • Di Valentin M, Ceola S, Salvadori E, Agostini G, Giacometti GM, Carbonera D (2008c) Spectroscopic properties of the peridinins involved in chlorophyll triplet quenching in high-salt peridinin-chlorophyll a-protein from Amphidinium carterae as revealed by optically detected magnetic resonance, pulse EPR and pulse ENDOR spectroscopies. Biochim Biophys Acta 1777:1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Di Valentin M, Agostini G, Salvadori E, Ceola S, Giacometti GM, Hiller RG, Carbonera D (2009) Triplet–triplet energy transfer in Peridinin-Chlorophyll a-protein reconstituted with Chl a and Chl d as revealed by optically detected magnetic resonance and pulse EPR: comparison with the native PCP complex from Amphidinium carterae. Biochim Biophys Acta 1787:168–175

    Article  CAS  PubMed  Google Scholar 

  • Drzewiecka-Matuszek A, Skalna A, Karocki A, Stochel G, Fiedor L (2005) Effects of heavy central metal on the ground and excited states of chlorophyll. J Biol Inorg Chem 10:453–462

    Article  CAS  PubMed  Google Scholar 

  • Ehlers F, Wild DA, Lenzer T, Oum K (2007) Investigation of the S1/ICT → S0 internal conversion lifetime of 4’-apo-β-caroten-4’-al and 8’-apo-β-caroten-8’-al: dependence on conjugation length and solvent polarity. J Phys Chem A 111:2257–2265

    Article  CAS  PubMed  Google Scholar 

  • Frank HA, Bautista JA, Josue J, Pendon Z, Hiller RG, Sharples FP, Gosztola D, Wasielewski MR (2000) Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J Phys Chem B 104:4569–4577

    Article  CAS  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272:1788–1791

    Article  CAS  PubMed  Google Scholar 

  • Isler O (1971) Carotenoids. Birkhauser, Basel

    Google Scholar 

  • Kajikawa T, Hasegawa S, Iwashita T, Kusumoto T, Hashimoto H, Niedzwiedzki DM, Frank HA, Katsumura S (2009) Syntheses of C33-, C35-, and C39-peridinin and their spectral characteristics. Org Lett 11:5006–5009

    Article  CAS  PubMed  Google Scholar 

  • Kleima FJ, Wendling M, Hofmann E, Peterman EJG, van Grondelle R, van Amerongen H (2000) Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy. Biochem 39:5184–5195

    Article  CAS  Google Scholar 

  • Kopczynski M, Ehlers F, Lenzer T, Oum K (2007) Evidence for an intramolecular charge transfer state in 12’-apo-β-caroten-12’-al and 8’-apo-β-caroten-8’-al: influence of solvent polarity and temperature. J Phys Chem A 111:5370–5381

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto T, Horibe T, Kajikawa T, Hasegawa S, Iwashita T, Cogdell RJ, Birge RR, Frank HA, Katsumura S, Hashimoto H (2010) Stark absorption spectroscopy of peridinin and allene-modified analogues. Chem Phys (in press)

  • Mathis P, Kleo J (1973) Triplet state of β-carotene and of analog polyenes of different length. Photochem Photobiol 18:343–346

    Article  CAS  Google Scholar 

  • Mezzetti A, Spezia R (2008) Time-resolved step scan FTIR spectroscopy and DFT investigation on triplet formation in peridinin-chlorophyll-a-protein from Amphidinium carterae at low temperature. Spectroscopy 22:235–250

    CAS  Google Scholar 

  • Niedzwiedzki DM, Chatterjee N, Enriquez MM, Kajikawa T, Hasegawa S, Katsumura S, Frank HA (2009) Spectroscopic investigation of peridinin analogues having different π-electron conjugated chain lengths: exploring the nature of the intramolecular charge transfer state. J Phys Chem B 113:13604–13612

    Article  CAS  PubMed  Google Scholar 

  • Niklas J, Schulte T, Prakash S, van Gastel M, Hofmann E, Lubitz W (2007) Spin-density distribution of the carotenoid triplet state in the peridinin-chlorophyll-protein antenna. A Q-band pulse electron-nuclear double resonance and density functional theory study. J Am Chem Soc 129:15442–15443

    Article  CAS  PubMed  Google Scholar 

  • Papagiannakis E (2004) Shedding light on the dark states of carotenoids. Free University of Amsterdam, Amsterdam

    Google Scholar 

  • Pendon ZD, Ivd Hoef, Lugtenburg J, Frank HA (2006) Triplet state spectra and dynamics of geometric isomers of carotenoids. Photosynth Res 88:51–61

    Article  CAS  PubMed  Google Scholar 

  • Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoids excited states—from solution to natural and artificial systems. Chem Rev 104:2021–2071

    Article  PubMed  Google Scholar 

  • Polívka T, Pascher T, Sundström V, Hiller RG (2005) Tuning energy transfer in the peridinin-chlorophyll complex by reconstitution with different chlorophylls. Photosynth Res 86:217–227

    Article  PubMed  Google Scholar 

  • Polívka T, van Stokkum IHM, Zigmantas D, van Grondelle R, Sundstrom V, Hiller RG (2006) Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae. Biochem 45:8516–8526

    Article  Google Scholar 

  • Polívka T, Hiller RG, Frank HA (2007) Spectroscopy of the peridinin-chlorophyll a protein: insight into light-harvesting strategy of marine algae. Arch Biochem Biophys 458:111–120

    Article  PubMed  Google Scholar 

  • Polívka T, Pascher T, Hiller RG (2008) Energy transfer in the peridinin-chlorophyll protein complex reconstituted with mixed chlorophyll sites. Biophys J 94:3198–3207

    Article  PubMed  Google Scholar 

  • Premvardhan L, Papagiannakis E, Hiller RG, van Grondelle R (2005) The charge-transfer character of the S-0 → S-2 transition in the carotenoid peridinin is revealed by stark spectroscopy. J Phys Chem B 109:15589–15597

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Ilagan RP, Gillespie N, Sommer BJ, Hiller RG, Sharples FP, Frank HA, Birge RR (2003) Two-photon and fluorescence spectroscopy and the effect of environment on the photochemical properties of peridinin in solution and in the peridinin-chlorophyll-protein from Amphidinium carterae. J Phys Chem A 107:8052–8066

    Article  CAS  Google Scholar 

  • Stalke S, Wild DA, Lenzer T, Kopczynski M, Lohse PW, Oum K (2008) Solvent-dependent ultrafast internal conversion dynamics of n’-apo-β-carotenoic-n’-acids (n = 8, 10, 12). Phys Chem Chem Phys 10:2180–2188

    Article  CAS  PubMed  Google Scholar 

  • Turro NJ (1991) Modern molecular photochemistry. University Science Books, California

    Google Scholar 

  • Van Stokkum IHM, Papagiannakis E, Vengris M, Salverda JM, Polivka T, Zigmantas D, Larsen DS, Lampoura SS, Hiller RG, van Grondelle R (2009) Inter-pigment interactions in the peridinin chlorophyll protein studied by global and target analysis of time resolved absorption spectra. Chem Phys 357:70–78

    Article  Google Scholar 

  • Van Tassle AJ, Prantil MA, Hiller RG, Fleming GR (2007) Excited state structural dynamics of the charge transfer state of peridinin. Isr J Chem 47:17–24

    Article  Google Scholar 

  • Vaswani HM, Hsu CP, Head-Gordon M, Fleming GR (2003) Quantum chemical evidence for an intramolecular charge-transfer state in the carotenoid peridinin of peridinin-chlorophyll-protein. J Phys Chem B 107:7940–7946

    Article  CAS  Google Scholar 

  • Vaswani HM, Holt NE, Fleming GR (2005) Carotenoid–chlorophyll complexes: ready-to-harvest. Pure Appl Chem 77:925–945

    Article  CAS  Google Scholar 

  • Wild DA, Winkler K, Stalke S, Oum K, Lenzer T (2006) Extremely strong solvent dependence of the S1 → S0 internal conversion lifetime of 12’-apo-β-caroten-12’-al. Phys Chem Chem Phys 8:2499–2505

    Article  CAS  PubMed  Google Scholar 

  • Zigmantas D, Polivka T, Hiller RG, Yartsev A, Sundström V (2001) Spectroscopic and dynamic properties of the peridinin lowest singlet excited states. J Phys Chem A 105:10296–10306

    Article  CAS  Google Scholar 

  • Zigmantas D, Hiller RG, Polivka T, Sundström V (2002) Carotenoid to chlorophyll energy transfer in the peridinin chlorophyll-a protein complex: a unique pathway involving an intramolecular charge transfer state. Proc Nat Acad Sci USA 99:16760–16765

    Article  CAS  PubMed  Google Scholar 

  • Zigmantas D, Hiller RG, Yartsev A, Sundström V, Polivka T (2003) Dynamics of excited states of the carotenoid peridinin in polar solvents: dependence on excitation wavelength, viscosity, and temperature. J Phys Chem B 107:5339–5348

    Article  CAS  Google Scholar 

  • Zigmantas D, Hiller RG, Sharples FP, Frank HA, Sundstrom V, Polivka T (2004) Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys 6:3009–3016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tomáš Polívka for useful discussions and suggestions. We also thank Dr. Thomas Netscher of DSM Nutritional Products, Ltd., for the donation of (−)-actinol. This research was supported by a grant from the National Science Foundation (MCB-0913022), and the University of Connecticut Research Foundation. Support for SD was provided by a grant from the National Science Foundation Research Experience for Undergraduates (NSF-REU) Program (CHE-0754580). This study was also supported by a Grant-in-Aid for Science Research on Priority Areas 16073222 from the Ministry of Education, Culture, Sports, Science and Technology, and also Matching Fund Subsidy for a Private University, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry A. Frank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaligotla, S., Doyle, S., Niedzwiedzki, D.M. et al. Triplet state spectra and dynamics of peridinin analogs having different extents of π-electron conjugation. Photosynth Res 103, 167–174 (2010). https://doi.org/10.1007/s11120-010-9535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9535-y

Keywords

Navigation