Skip to main content
Log in

Characterization of the NADP malic enzyme gene family in the facultative, single-cell C4 monocot Hydrilla verticillata

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Hydrilla verticillata has a facultative single-cell system that changes from C3 to C4 photosynthesis. A NADP+-dependent malic enzyme (NADP-ME) provides a high [CO2] for Rubisco fixation in the C4 leaf chloroplasts. Of three NADP-ME genes identified, only hvme1 was up-regulated in the C4 leaf, during the light period, and it possessed a putative transit peptide. Unlike obligate C4 species, H. verticillata exhibited only one plastidic isoform that may perform housekeeping functions, but is up-regulated as the photosynthetic decarboxylase. Of the two cytosolic forms, hvme2 and hvme3, the latter exhibited the greatest expression, but was not light-regulated. The mature isoform of hvme1 had a pI of 6.0 and a molecular mass of 64 kD, as did the recombinant rHVME1m, and it formed a tetramer in the chloroplast. The recombinant photosynthetic isoform showed intermediate characteristics between isoforms in terrestrial C3 and C4 species. The catalytic efficiency of rHVME1m was four-fold higher than the cytosolic rHVME3 and two-fold higher than recombinant cytosolic isoforms of rice, but lower than plastidic forms of maize. The K m (malate) of 0.6 mM for rHVME1 was higher than maize plastid isoforms, but four-fold lower than found with rice. A comprehensive phylogenetic analysis of 25 taxa suggested that chloroplastic NADP-ME isoforms arose from four duplication events, and hvme1 was derived from cytosolic hvme3. The chloroplastic eudicot sequences were a monophyletic group derived from a cytosolic clade after the eudicot and monocot lineages separated, while the monocots formed a polyphyletic group. The findings support the hypothesis that a NADP-ME isoform with specific and unusual regulatory properties facilitates the functioning of the single-cell C4 system in H. verticillata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAM:

Crassulacean acid metabolism

NADP-ME:

NADP+-dependent malic enzyme

PEPC:

Phosphoenolpyruvate carboxylase

References

  • Akhani H, Barroca J, Koteeva N, Voznesenskaya E, Franceschi V, Edwards G, Ghaffari SM, Ziegler H (2005) Bienertia sinuspersici (Chenopodiaceae): A new species from southwest Asia and discovery of a third terrestrial C4 plant without Kranz anatomy. Syst Bot 30:290–301

    Article  Google Scholar 

  • Asami S, Inoue K, Matsumoto K, Murachi A, Akazawa T (1979) NADP-malic enzyme from maize leaf: purification and properties. Arch Biochem Biophys 194:503–510

    Article  CAS  PubMed  Google Scholar 

  • Ashton AR (1997) NADP-malic enzyme from the C4 plant Flaveria bidentis: nucleotide substrate specificity. Arch Biochem Biophys 345:251–258

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  CAS  PubMed  Google Scholar 

  • Bhatia IS, Ahuja KL, Sukhija PS (1979) Fatty acid synthesis in Hydrilla chloroplasts. Physiol Plant 47:81–86

    Article  CAS  Google Scholar 

  • Bowes G, Rao SK, Estavillo GM, Reiskind JB (2002) C4 mechanisms in aquatic angiosperms: comparisons with terrestrial C4 systems. Funct Plant Biol 29:379–392

    Article  CAS  Google Scholar 

  • Carlson JE, Tulsieram LK, Glaubitz JC, Luk VWK, Kauffeldt C, Rutledge R (1991) Segregation of random amplified DNA Markers in F1 progeny of conifers. Theor Appl Genet 83:194–200

    Article  Google Scholar 

  • Casati P, Lara MV, Andreo CS (2000) Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submersed aquatic species. Plant Physiol 123:1611–1622

    Article  CAS  PubMed  Google Scholar 

  • Casati P, Spampinato CP, Andreo CS (1997) Characteristics and physiological function of NADP-malic enzyme from wheat. Plant Cell Physiol 38:928–934

    CAS  Google Scholar 

  • Chang GG, Tong L (2003) Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry 42:12721–12733

    Article  CAS  PubMed  Google Scholar 

  • Chase MW (2004) Monocot relationships: an overview. Am J Bot 91:1645–1655

    CAS  Google Scholar 

  • Cheng YX, Takano T, Zhang XX, Yu S, Liu DL, Liu SK (2006) Expression, purification, and characterization of two NADP-malic enzymes of rice (Oryza sativa L.) in Escherichia coli. Protein Expr Purif 45:200–205

    Article  CAS  PubMed  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed  Google Scholar 

  • Chi W, Yang J, Wu N, Zhang F (2004) Four rice genes encoding NADP malic enzyme exhibit distinct expression profiles. Biosci Biotechnol Biochem 68:1865–1874

    Article  CAS  PubMed  Google Scholar 

  • Cushman JC (1992) Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemum crystallinum. Eur J Biochem 208:259–266

    Article  CAS  PubMed  Google Scholar 

  • Detarsio E, Alvarez CE, Saigo M, Andreo CS, Drincovich MF (2006) Identification of domains involved in tetramerization and malate inhibition of maize C4 NADP-malic enzyme. J Biol Chem 282:6053–6060

    Article  PubMed  CAS  Google Scholar 

  • Detarsio E, Wheeler MCG, Bermudez VAC, Andreo CS, Drincovich MF (2003) Maize C4 NADP-malic enzyme—Expression in Escherichia coli and characterization of site-directed mutants at the putative nucleotide-binding sites. J Biol Chem 278:13757–13764

    Article  CAS  PubMed  Google Scholar 

  • Drincovich MF, Casati P, Andreo CS (2001) NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways. FEBS Lett 490:1–6

    Article  CAS  PubMed  Google Scholar 

  • Drincovich MF, Casati P, Andreo CS, Chessin SJ, Franceschi VR, Edwards GE, Ku MSB (1998) Evolution of C4 photosynthesis in Flaveria species—Isoforms of NADP-malic enzyme. Plant Physiol 117:733–744

    Article  CAS  PubMed  Google Scholar 

  • Drincovich MF, Iglesias AA, Andreo CS (1991) Interaction of divalent metal–ions with the NADP+-malic enzyme from maize leaves. Physiol Plant 81:462–466

    Article  CAS  Google Scholar 

  • Edwards GE, Andreo CS (1992) NADP-malic enzyme from plants. Phytochemistry 31:1845–1857

    Article  CAS  PubMed  Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annl Rev Plant Biol 55:173–196

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    CAS  PubMed  Google Scholar 

  • Ferreyra MLF, Andreo CS, Podesta FE (2003) Purification and physical and kinetic characterization of a photosynthetic NADP-dependent malic enzyme from the CAM plant Aptenia cordifolia. Plant Sci 164:95–102

    Article  CAS  Google Scholar 

  • Grover SD, Canellas PF, Wedding RT (1981) Purification of NAD malic enzyme from potato and investigation of some physical and kinetic properties. Arch Biochem Biophys 209:396–407

    Article  CAS  PubMed  Google Scholar 

  • Hatch MD, Mau SL (1977) Association of NADP- and NAD-linked malic enzyme activities in Zea mays—Relation to C4 pathway photosynthesis. Arch Biochem Biophys 179:361–369

    Article  CAS  PubMed  Google Scholar 

  • Holaday AS, Salvucci ME, Bowes G (1983) Variable photosynthesis photo-respiration ratios in Hydrilla and other submersed aquatic macrophyte species. Can J Bot-Revue Canadienne De Botanique 61:229–236

    Google Scholar 

  • Honda H, Akagi H, Shimada H (2000) An isozyme of the NADP-malic enzyme of a CAM plant, Aloe arborescens, with variation on conservative amino acid residues. Gene 243:85–92

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Wang H, Chen D, Chen Y, Zhu D (1994) Enhancement of expression of human granulocyte-macrophage colony stimulating factor by argU gene product in Escherichia coli. Biochem Mol Biol Int 32:537–543

    CAS  PubMed  Google Scholar 

  • Iglesias AA, Andreo CS (1989) Purification of NADP-malic enzyme and phosphoenolpyruvate carboxylase from sugar cane leaves. Plant Cell Physiol 30:399–405

    CAS  Google Scholar 

  • Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–570

    Article  CAS  PubMed  Google Scholar 

  • Keeley JE (1998) C4 photosynthetic modifications in the evolutionary transition from land to water in aquatic grasses. Oecologia 116:85–97

    Article  Google Scholar 

  • Kucho K, Yoshioka S, Taniguchi F, Ohyama K, Fukuzawa H (2003) Cis-acting elements and DNA-binding proteins involved in CO2-responsive transcriptional activation of Cah1 encoding a periplasmic carbonic anhydrase Ckhlamydomonas reinhardtii. Plant Physiol 133:783–793

    Article  CAS  PubMed  Google Scholar 

  • Lai LB, Tausta SL, Nelson TM (2002a) Differential regulation of transcripts encoding cytosolic NADP-malic enzyme in C3 and C4 Flaveria species. Plant Physiol 128:140–149

    Article  CAS  PubMed  Google Scholar 

  • Lai LB, Wang L, Nelson TM (2002b) Distinct but conserved functions for two chloroplastic NADP- malic enzyme isoforms in C3 and C4 Flaveria species. Plant Physiol 128:125–139

    Article  CAS  PubMed  Google Scholar 

  • Lara MV, Drincovich MF, Muller GL, Maurino VG, Andreo CS (2005) NADP-malic enzyme and Hsp70:Co-purification of both proteins and modification of NADP-malic enzyme properties by association with Hsp70. Plant Cell Physiol 46:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Magnin NC, Cooley BA, Reiskind JB, Bowes G (1997) Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiol 115:1681–1689

    CAS  PubMed  Google Scholar 

  • Marshall JS, Stubbs JD, Taylor WC (1996) Two genes encode highly similar chloroplastic NADP-malic enzymes in Flaveria. Implications for the evolution of C4 photosynthesis. Plant Physiol 111:1251–1261

    Article  CAS  PubMed  Google Scholar 

  • Maurino VG, Drincovich MF, Andreo CS (1996) NADP-malic enzyme isoforms in maize leaves. Biochem Mol Biol Int 38:239–250

    CAS  PubMed  Google Scholar 

  • Maurino VG, Saigo M, Andreo CS, Drincovich MF (2001) Non-photosynthetic ‘malic enzyme’ from maize: a constituvely expressed enzyme that responds to plant defence inducers. Plant Mol Biol 45:409–420

    Article  CAS  PubMed  Google Scholar 

  • Monson RK (2003) Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int J Plant Sci 164:S43–S54

    Article  CAS  Google Scholar 

  • Portis AR Jr. (1981) Evidence of a low stromal Mg2+ concentration in intact chloroplasts in the dark: I. Studies with the inophore A23187. Plant Physiol 67:985–989

    Article  CAS  PubMed  Google Scholar 

  • Prestridge DS (1991) Signal Scan—a computer program that scans DNA sequences for eukaryotic transcriptional elements. Bioinformatics 7:203–206

    Article  CAS  Google Scholar 

  • Rajeevan MS, Bassett CL, Hughes DW (1991) Isolation and characterization of cDNA clones for NADP-malic enzyme from leaves of Flaveria: transcript abundance distinguishes C3, C3–C4 and C4 photosynthetic types. Plant Mol Biol 17:371–383

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Fukayama H, Reiskind J, Miyao M, Bowes G (2006a) Identification of C4 responsive genes in the facultative C4 plant Hydrilla verticillata. Photosynth Res 88:173–183

    Article  CAS  PubMed  Google Scholar 

  • Rao SK, Magnin NC, Reiskind JB, Bowes G (2002) Photosynthetic and other phosphoenolpyruvate carboxylase isoforms in the single-cell, facultative C4 system of Hydrilla verticillata. Plant Physiol 130:876–886

    Article  CAS  PubMed  Google Scholar 

  • Rao SK, Reiskind JB, Bowes G (2006b) Light regulation of the photosynthetic phosphoenolpyruvate carboxylase (PEPC) in Hydrilla verticillata. Plant Cell Physiol 47:1206–1216

    Google Scholar 

  • Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111

    Article  CAS  PubMed  Google Scholar 

  • Reiskind JB, Bowes G (1991) The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc Natl Acad Sci USA 88:2883–2887

    Article  CAS  PubMed  Google Scholar 

  • Reiskind JB, Madsen TV, VanGinkel LC, Bowes G (1997) Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot. Plant Cell Environ 20:211–220

    Article  CAS  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    Article  CAS  Google Scholar 

  • Saigo M, Bologna FP, Maurino VG, Detarsio E, Andreo CS, Drincovich MF (2004) Maize recombinant non-C4 NADP-malic enzyme: a novel dimeric malic enzyme with high specific activity. Plant Mol Biol 55:97–107

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Bowes G (1981) Induction of reduced photorespiratory activity in submersed and amphibious aquatic macrophytes. Plant Physiol 67:335–340

    CAS  PubMed  Google Scholar 

  • Schagger H, Vonjagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  CAS  PubMed  Google Scholar 

  • Shearer HL, Dennis DT (2005) Characterization and functional expression in yeast of a cDNA encoding NADP-dependent malic enzyme from castor oil seed. Can J Bot 83:237–241

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annl Rev Plant Biol 53:449–475

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP* 4.0: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Takeuchi K, Akagi H, Kamasawa N, Osumi M, Honda H (2000) Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta 211:265–274

    Article  CAS  PubMed  Google Scholar 

  • Tausta SL, Coyle HM, Rothermel B, Stiefel V, Nelson T (2002) Maize C4 and non-C4 NADP-dependent malic enzymes are encoded by distinct genes derived from a plastid-localized ancestor. Plant Mol Biol 50:635–652

    Article  CAS  PubMed  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H, Edwards GE (2002) Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31:649–662

    Article  CAS  PubMed  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414:543–546

    Article  CAS  PubMed  Google Scholar 

  • Wheeler MCG, Tronconi MA, Drincovich MF, Andreo CS, Flugge UI, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139:39–51

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Fortin S (2001) The BioTools Suite—a comprehensive suite of platform-independent bioinformatics tools. Mol Biotechnol 19:59–77

    Article  CAS  PubMed  Google Scholar 

  • Zahn K (1996) Overexpression of an mRNA dependent on rare codons inhibits protein synthesis and cell growth. J Bacteriol 178:2926–2933

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms Margaret Glenn (Center for Aquatic and Invasive Plant Research, University of Florida) for assistance in collecting plant material, and Dr Hiroshi Fukayama (Kobe University, Japan) for his generous gift of anti-rice NADP-ME. We appreciate the technical assistance for BN-PAGE analysis provided by members of the Dr Kenneth Cline laboratory. We also thank Drs Pamela S. Soltis (Florida Museum of Natural History, University of Florida) and Pablo Speranza (Facultad de Agronomía, Montevideo, Uruguay) for help with the phylogenetic analysis. The Amborella trichopoda NADP-ME cDNA was retrieved from the Floral Genome Project (NSF grant PGR-0115684). Financial support was provided by the United States Department of Agriculture, National Research Initiatives Competitive Grants Program grant No. 98-35306-6449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo M. Estavillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11120_2007_9212_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estavillo, G.M., Rao, S.K., Reiskind, J.B. et al. Characterization of the NADP malic enzyme gene family in the facultative, single-cell C4 monocot Hydrilla verticillata . Photosynth Res 94, 43–57 (2007). https://doi.org/10.1007/s11120-007-9212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9212-y

Keywords

Navigation