Skip to main content
Log in

Triplet state spectra and dynamics of geometric isomers of carotenoids

  • Regular paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The observation of preferential binding of cis-carotenoids in purple bacterial photosynthetic reaction centers versus trans-isomers in antenna pigment protein complexes has led to the hypothesis that the natural selection of stereoisomers has physiological significance. In order to test this hypothesis, we have undertaken a systematic series of investigations comparing the optical spectroscopic properties and excited state dynamics of cis and trans isomers of carotenoids. The present work compares the triplet state spectra, lifetimes, and energy transfer rates of all-trans-spheroidene and 13,14-locked-cis-spheroidene, the latter of which is incapable of isomerizing to the all-trans configuration, and therefore provides a unique opportunity to examine the triplet state properties of a structurally stable cis molecule. The data reveal only small differences in spectra, decay dynamics, and transfer times and suggest there is little intrinsic advantage in either triplet energy transfer or triplet state decay arising from the inherently different isomeric forms of cis compared to trans carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPLC:

high performance liquid chromatography

TPP:

tetraphenylporphyrin

References

  • Adler AD, Longo FR, Finarelli JD, Goldmacher J, Assour J, Korsakoff L, (1967) A simplified synthesis for TPP J Org Chem 32: 476

    Article  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H, Rees DC, (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1. In: Breton J, Vermeglio A, (eds) The Photosynthetic Bacterial Reaction Center (149). Plenum New York, 5–11

    Google Scholar 

  • Arnoux B, Ducruix A, Reiss-Husson F, Lutz M, Norris J, Schiffer M, Chang C-H, (1989) Structure of spheroidene in the photosynthetic reaction center from Y Rhodobacter sphaeroides FEBS Lett 258: 47–50

    Article  PubMed  CAS  Google Scholar 

  • Baird NC, West RM, (1971) Quantum organic photochemistry. I. Intramolecular potential energy surfaces for the lowest 3ππ state of polyenes J Am Chem Soc 93: 4427–4432

    Article  CAS  Google Scholar 

  • Bautista JA, Chynwat V, Cua A, Jansen FJ, Lugtenburg J, Gosztola D, Wasielewski MR, Frank HA, (1998) The spectroscopic and photochemical properties of locked-15,15′-cis-spheroidene in solution and incorporated into the reaction center of Rhodobacter sphaeroides R-26.1 Photosynth Res 55: 49–65

    Article  CAS  Google Scholar 

  • Bensasson R, Dawe EA, Long DA, Land EJ, (1977) Singlet→triplet intersystem crossing quantum yields of photosynthetic and related polyenes J Chem Soc Faraday Trans 1 73: 1319–1325

    Article  CAS  Google Scholar 

  • Bensasson R, Land EJ, Maudinas B, (1976) Triplet states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet and electron pulse irradiation Photochem Photobiol 23: 189–193

    Article  PubMed  CAS  Google Scholar 

  • Bialek-Bylka G, Hiyama T, Yumoto K, Koyama Y, (1996) 15-cis-β-carotene found in the reaction center of spinach photosystem I Photosynth Res 49: 245–250

    Article  CAS  Google Scholar 

  • Bialek-Bylka GE, Fujii R, Chen C-H, Oh-Oka H, Kamiesu A, Satoh K, Koike H, Koyama Y, (1998) 15-cis-carotenoids found in the reaction center of the green sulfur bacterium Chlorobium tepidum and in the photosystem I reaction center of the cyanobacterium Synechococcus vulcanus Photosynth Res 58: 135–142

    Article  CAS  Google Scholar 

  • Boucher F, Gingras G, (1984) Spectral evidence for photo-induced isomerization of carotenoids in bacterial photoreaction center Photochem Photobiol 40: 277–281

    Article  CAS  Google Scholar 

  • Boucher F, van der Rest M, Gingras G, (1977) Structure and function of carotenoids in the photoreaction center from Rhodospirillum rubrum Biochim Biophys Acta 461: 339–3357

    Article  PubMed  CAS  Google Scholar 

  • Britton G, (1995) UV/Visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H, (eds) Carotenoids, (vol 1B): Spectroscopy Birkhäuser Verlag Basel, 13–62

    Google Scholar 

  • Bruckner C, McCarthy JR, Daniell HW, Pendon ZD, Ilagan RP, Francis TM, Rei L, Birge RR, Frank HA, (2003) A spectroscopic and computational study of the singlet and triplet excited states of synthetic β-functionalized chlorins Chem Phys 294: 285–303

    Article  CAS  Google Scholar 

  • Byrdin M, Jordan P, Krauss N, Fromme P, Stehlik D, Schlodder E, (2002) Light harvesting in photosystem I: modeling based on the 2.5-angstrom structure of photosystem I from Synechococcus elongatus Biophys J 83: 433–457

    Article  PubMed  CAS  Google Scholar 

  • Chang C-H, El-Kabbani O, Tiede D, Norris J, Schiffer M, (1991) Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides Biochemistry 30: 5352–5360

    Article  PubMed  CAS  Google Scholar 

  • Chessin M, Livingston R, Truscott TG, (1966) Direct evidence for the sensitized formation of a metastable state of b-carotene Trans Faraday Soc 62: 1519–1524

    Article  CAS  Google Scholar 

  • Christensen RL, Kohler BE, (1973) Low resolution optical spectroscopy of retinyl polyenes: low-lying electronic levels and spectral broadness Photochem Photobiol 18: 293–301

    Article  CAS  Google Scholar 

  • Claes H, (1961) Energy transfer of excited chlorophyll to C40-polyenes possessing various chromophore groups Z Naturforsch 16b: 445–454

    CAS  Google Scholar 

  • Cogdell RJ, Frank HA, (1987) How carotenoids function in photosynthetic bacteria Biochim Biophys Acta 895: 63–79

    PubMed  CAS  Google Scholar 

  • Cogdell RJ, Land EJ, Truscott TG, (1983) The triplet extinction coefficients of some bacterial carotenoids Photochem Photobiol 38: 723–725

    Article  CAS  Google Scholar 

  • Dale J, (1954) Empirical relationship of the minor bands in the absorption spectra of polyenes Acta Chem Scand 8: 1235–1256

    Article  CAS  Google Scholar 

  • De Groot HJM, Gebhard R, Van der Hoef I, Hoff AJ, Lugtenburg J, Violette CA, Frank HA, (1992) Carbon-13 magic angle spinning NMR evidence for a 15,15′-cis configuration of the spheroidene in the Rhodobacter sphaeroides photosynthetic reaction center Biochemistry 31: 12446–12450

    Article  PubMed  Google Scholar 

  • Demmig-Adams B, (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin Biochim Biophys Acta 1020: 1–24

    Article  CAS  Google Scholar 

  • Dexter DL, (1953) A theory of sensitised luminescence in solids J Chem Phys 21: 836–860

    Article  CAS  Google Scholar 

  • Englman R, Jortner J, (1970) The energy gap law for radiationless transitions in large molecules Mol Phys 18: 145–164

    Article  CAS  Google Scholar 

  • Ermler U, Fritzch G, Buchanan SK, Michel H, (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65Å resolution: cofactors and protein-cofactor interactions Structure 2: 925–936

    Article  PubMed  CAS  Google Scholar 

  • Farhoosh R, Chynwat V, Gebhard R, Lugtenburg J, Frank HA, (1994) Triplet energy transfer between bacteriochlorophyll and carotenoids in B850 light-harvesting complexes of Rhodobacter sphaeroides R-26.1 Photosynth Res 42: 157–166

    Article  CAS  Google Scholar 

  • Farhoosh R, Chynwat V, Gebhard R, Lugtenburg J, Frank HA, (1997) Triplet energy transfer between the primary donor and carotenoids in Rhodobacter sphaeroides R-26.1 reaction centers incorporated with spheroidene analogs having different extents of π-electron conjugation Photochem Photobiol 66: 97–104

    Article  PubMed  CAS  Google Scholar 

  • Feher G, Allen JP, Okamura MY, Rees DC, (1989) Structure and function of bacterial photosynthetic reaction centers Nature 339: 111–116

    Article  CAS  Google Scholar 

  • Foote CS, Chang YC, Denny RW, (1970) Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection J Am Chem Soc 92: 5216–5218

    Article  PubMed  CAS  Google Scholar 

  • Frank HA, Desamero RZB, Chynwat V, Gebhard R, van der Hoef I, Jansen FJ, Lugtenburg J, Gosztola D, Wasielewski MR, (1997) Spectroscopic properties of spheroidene analogs having different extents of π-electron conjugation J Phys Chem A 101: 149–157

    Article  CAS  Google Scholar 

  • Fujii R, Furuichi K, Zhang JP, Nagae H, Hashimoto H, Koyama Y, (2002) Cis-to-trans isomerization of spheroidene in the triplet state as detected by time-resolved absorption spectroscopy J Phys Chem A 106: 2410–2421

    Article  CAS  Google Scholar 

  • Gall A, Ridge JP, Robert B, Cogdell RJ, Jones MR, Fyfe PK, (1999) Effects of mutagenesis on the detailed structure of spheroidenone in the Rhodobacter sphaeroides reaction centre examined by resonance Raman spectroscopy Photosynth Res 59: 223–230

    Article  CAS  Google Scholar 

  • Gust D, Moore TA, Moore AL, Kuciauskas D, Liddell PA, Halbert BD, (1998) Mimicry of carotenoid photoprotection in artificial photosynthetic reaction centers: triplet–triplet energy transfer by a relay mechanism J Photochem Photobiol B 43: 209–216

    Article  CAS  Google Scholar 

  • Hashimoto H, Koyama Y, (1988) Time-resolved resonance Raman spectroscopy of triplet ß-carotene produced from all-trans, 7-cis, 9-cis, 13-cis, and 15-cis isomers and high-pressure liquid chromatography analyses of photoisomerization via the triplet state J Phys Chem 92: 2101–2108

    Article  CAS  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K, (1996) Structural basis of light harvesting by carotenoids: peridinin–chlorophyll–protein from Amphidinium carterae Science 272: 1788–1791

    Article  PubMed  CAS  Google Scholar 

  • Hudson BS, Kohler BE, Schulten K, (1982) Linear polyene electronic structure and potential surfaces. In: Lim ED, (ed) Excited States 6Academic Press New York, 1–95

    Google Scholar 

  • Isler O (ed) (1971) Carotenoids. Birkhauser, Basel

  • Iwata K, Hayashi H, Tasumi M, (1985) Resonance Raman studies of the conformations of all-trans carotenoids in light-harvesting systems of photosynthetic bacteria Biochim Biophys Acta 810: 269–273

    Article  CAS  Google Scholar 

  • Jensen NH, Wilbrandt R, Pagsberg PB, (1980) Sensitized triplet formation of chlorophyll-a and b-carotene Photochem Photobiol 32: 719–725

    Article  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Seanger W, Krauss N, (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Ang. Resolution Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kodis G, Herrero C, Palacios R, Mariño-Ochoa E, Gould S, de la Garza L, van Grondelle R, Gust D, Moore TA, Moore AL, Kennis JTM, (2004) Light harvesting and photoprotective functions of carotenoids in compact artificial photosynthetic antenna designsJ Phys Chem B 108: 414–425

    Article  CAS  Google Scholar 

  • Koepke J, Hu X, Schulten K, Michel H, (1996) The crystal structure of the light harvesting complex II (B800–850) from Rhodospirillum molischianum Structure 4: 581–597

    Article  PubMed  CAS  Google Scholar 

  • Komiya H, Yeates TO, Rees DC, Allen JP, Feher G, (1988) Structure of the reaction center from Rhodopseudomonas sphaeroides R-26 and 2.4.1: symmetry relations and sequence comparisons between different species Proc Natl Acad Sci USA 85: 9012–9016

    Article  PubMed  CAS  Google Scholar 

  • Koyama Y (1995) Natural selection of carotenoid configurations by light-harvesting complexes and reaction centers: configurational dependence of excited-state properties. In: 10th Int Photosynth Congr, Vol 4, pp. 83–86. Montpellier, France

  • Koyama Y, Fujii R, (1999) Cistrans carotenoids in photosynthesis: configurations, excited-state properties and physiological functions. In: Frank HA, Young AJ, Britton G, Cogdell RJ, (eds) The Photochemistry of Carotenoids, (vol 8). Kluwer Academic Publishers Dordrecht, 161–188

    Google Scholar 

  • Koyama Y, Kanaji M, Shimamura T, (1988) Configurations of neurosporene isomers isolated from the reaction center and the light-harvesting complex of Rhodobacter spheroides G1C. A resonance Raman, electronic absorption, and proton-NMR study Photochem Photobiol 48: 107–114

    Article  CAS  Google Scholar 

  • Koyama Y, Kito M, Takii T, Saiki K, Tsukida K, Yamashita J, (1982) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. Comparison of the resonance Raman spectrum of the reaction centers of Rhodopseudomonas sphaeroides G1C with those of cistrans isomers of ß-carotene Biochim Biophys Acta 680: 109–118

    Article  CAS  Google Scholar 

  • Koyama Y, Takatsuka I, Kanaji M, Tomimoto K, Kito M, Shimamura T, Yamashita J, Saiki K, Tsukida K, (1990) Configurations of carotenoids in the reaction center and the light-harvesting complex of Rhodospirillum rubrum. Natural selection of carotenoid configurations by pigment protein complexes Photochem Photobiol 51: 119–128

    Article  CAS  Google Scholar 

  • Krinsky NI, (1971) Function In: Isler O, Guttman G, Solms U, (eds) CarotenoidsBirkhauser Verlag Basel, 669–716

    Google Scholar 

  • Kuki M, Koyama Y, Nagae H, (1991) Triplet-sensitized and thermal isomerization of all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of ß-carotene: configurational dependence of the quantum yield of isomerization via the T1 state J. Phys. Chem. 95: 7171–7180

    Article  CAS  Google Scholar 

  • Kuki M, Naruse M, Kakuno T, Koyama Y, (1995) Resonance Raman evidence for 15-cis to all-trans photoisomerization of spirilloxanthin bound to a reduced form of the reaction center of Rhodospirillum rubrum S1 Photochem Photobiol 62: 502–508

    Article  CAS  Google Scholar 

  • Lancaster CRD, Michel H, (1999) Refined crystal structure of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid J Mol Biol 1999: 883–898

    Article  Google Scholar 

  • Land EJ, Sykes A, Truscott TG, (1971) The in vitro photochemistry of biological molecules-II. The triplet states of beta-carotene and lycopene excted by pulse radiolysis Photochem Photobiol 13: 311–320

    Article  CAS  Google Scholar 

  • Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR, (2004) Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution Nature 428: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Lutz M, Agalidis I, Hervo G, Cogdell RJ, Reiss-Husson F, (1978) On the state of carotenoids bound to reaction centers of photosynthetic bacteria: a resonance Raman study Biochim Biophys Acta 503: 287–303

    Article  PubMed  CAS  Google Scholar 

  • Mathis P, Kleo J, (1973) Triplet state of β-carotene and of analog polyenes of different length Photochem Photobiol 18: 343–346

    Article  CAS  Google Scholar 

  • McAuley KE, Fyfe PK, Cogdell RJ, Isaacs NW, Jones MR, (2000) X-ray crystal structure of the YM210W mutant reaction centre from Rhodobacter sphaeroides FEBS Lett 467: 285–290

    Article  PubMed  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW, (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria Nature (Lond) 374: 517–521

    Article  CAS  Google Scholar 

  • Moore TA, Gust D, Moore AL, (1994) Carotenoids – natures unique pigments for light and energy processing Pure Appl Chem 66: 1033–1040

    Article  CAS  Google Scholar 

  • Nielsen BR, Jorgensen K, Skibsted LH, (1998) Triplet–triplet extinction coefficients, rate constants of triplet decay and rate constants of anthracene triplet sensitization by laser flash photolysis of astaxanthin, ß-carotene, canthaxanthin and zeaxanthin in deaerated toluene at 298 K J Photochem Photobiol A Chem 112: 127–133

    Article  CAS  Google Scholar 

  • Ohashi N, Ko-chi N, Kuki M, Shimamura T, Cogdell RJ, Koyama Y, (1996) The structures of S0 spheroidene in the light-harvesting (LH2) complex and S0 and T1 spheroidene in the reaction center of Rhodobacter sphaeroides 2.4.1 as revealed by Raman spectroscopy Biospectroscopy 2: 59–69

    Article  CAS  Google Scholar 

  • Ohmine I, Morokuma K, (1980) Photoisomerization of polyenes: potential energy surfaces and normal mode analysis J Chem Phys 73: 1907–1917

    Article  CAS  Google Scholar 

  • Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW, (2003) The structure and thermal motion of the B800–850 LH2 complex from Rps. acidophila at 2.0Å resolution and 100 K: new structural features and functionally relevant motions J Mol Biol 326: 1523–1538

    Article  PubMed  CAS  Google Scholar 

  • Pekkarinen L, Linschitz H, (1960) Studies on metastable states of porphyrins. II. Spectra and decay kinetics of tetraphenylporphine, zinc tetraphenylporphine and bacteriochlorophyll J Am Chem Soc 82: 2407–2411

    Article  CAS  Google Scholar 

  • Pendon ZD, Sullivan JO, van der Hoef I, Lugtenburg J, Cua A, Bocian DF, Birge RR, Frank HA (2005) Stereoisomers of carotenoids: spectroscopic properties of locked and unlocked cis-isomers of spheroidene. Photosynth Res (in press)

  • Renger G, Wolff C, (1977) Further evidence for dissipative energy migration via triplet states in photosynthesis. The protective mechanism of carotenoids in Rhodopseudomonas sphaeroides chromatophores Biochim Biophys Acta 460: 47–57

    Article  PubMed  CAS  Google Scholar 

  • Robert B, (1999) The electronic structure, stereochemistry and resonance Raman spectroscopy of carotenoidsAdv Photosynth 8: 189–201

    Article  CAS  Google Scholar 

  • Roszak AW, McKendrick K, Gardiner AT, Mitchell IA, Isaacs NW, Cogdell RJ, Hashimoto H, Frank HA, (2004) Protein regulation of carotenoid binding: gatekeeper and locking amino acid residues in reaction centers of Rhodobacter sphaeroides Structure 12: 765–773

    Article  PubMed  CAS  Google Scholar 

  • Yeates TO, Komiya H, Chirino A, Rees DC, Allen JP, Feher G, (1988) Structure of the reaction center from Rhodopseudomonas sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions Proc Natl Acad Sci USA 85: 7993–7997

    Article  PubMed  CAS  Google Scholar 

  • Zechmeister L, (1962) Cistrans Isomeric Carotenoids, Vitamin A, and Arylpolyenes Academic Press New York

    Google Scholar 

Download references

Acknowledgements

The authors thank Christian Brückner for supplying the TPP for these experiments. This work has been supported in the laboratory of HAF by grants from the National Institutes of Health (GM-30353) and the University of Connecticut Research Foundation, and to JL from the Netherlands Foundation of Chemical Research (SON), which is financed by the Netherlands Organization for the Advancement of Pure Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry A. Frank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pendon, Z.D., der Hoef, I., Lugtenburg, J. et al. Triplet state spectra and dynamics of geometric isomers of carotenoids. Photosynth Res 88, 51–61 (2006). https://doi.org/10.1007/s11120-005-9026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-005-9026-8

Keywords

Navigation