Skip to main content
Log in

The Parametrix Method for Skew Diffusions

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this article, we apply the parametrix method in order to obtain the existence and the regularity properties of the density of a skew diffusion and provide a Gaussian upper bound. This expansion leads to a probabilistic representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, P., Kohatsu-Higa, A.: Unbiased simulation of stochastic differential equations using parametrix expansions (2015)

  2. Bally, V., Kohatsu-Higa, A.: A probabilistic interpretation of the parametrix method. Ann. Appl. Probab. 25, 3095–3138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Corielli, F., Foschi, P., Pascucci, A.: Parametrix approximation of diffusion transition densities. SIAM J. Financ. Math. 1, 833–867 (2010)

    Article  MathSciNet  Google Scholar 

  4. Étoré, P.: On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients. Electron. J. Probab. 11, 249–275 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Étoré, P., Martinez, M.: Exact simulation of one-dimensional stochastic differential equations involving the local time at zero the unknown process. Monte Carlo Methods Appl. 19, 41–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Friedman, A.: Partial Differential Equations of Parabolic Type. Dover, New York (1964)

    MATH  Google Scholar 

  7. Gairat, A., Shcherbakov, V.: Density of skew Brownian motion and its functionals with application in finance. Preprint arXiv:1407.1715v2 (2014)

  8. Harrison, J.M., Shepp, L.A.: On skew Brownian motion. Ann. Probab. 9, 309–313 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1998)

    Book  Google Scholar 

  10. Kestelman, H.: Modern Theories of Integration, 2nd edn. Dover, New York (1960)

    MATH  Google Scholar 

  11. Krylov, N.V.: On Itô stochastic integral equations. Theory Probab. Appl. 14 (2), 330–336 (1969)

    Article  MATH  Google Scholar 

  12. Kulik, A.M.: On the solution of a one-dimensional stochastic differential equation with singular drift coefficient. Ukr. Math. J. 56(5), 774–789 (2004)

    Article  MathSciNet  Google Scholar 

  13. Le Gall, J.F.: One-dimensional stochastic differential equations involving the local times of the unknown process. Stoch. Anal. Appl. Lect. Notes Math. 1095, 51–82 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lejay, A.: On the constructions of the skew Brownian motion. Probab. Surv. 3, 413–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lejay, A., Martinez, M.: A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients. Ann. Appl. Probab. 16(1), 107–139 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martinez, M., Talay, D.: One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted times. Elect. J. Probab. 17(27), 1–32 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Menozzi, S.: Parametrix techniques and martingale problems for some degenerate Kolmogorov equations. Electron. Commun. Probab. 16, 234–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nakao, S.: On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations. Osaka J. Math. 9, 513–518 (1972)

    MathSciNet  MATH  Google Scholar 

  19. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 2nd edn. Grundlehren der Mathematischen Wissenschaften (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohatsu-Higa, A., Taguchi, D. & Zhong, J. The Parametrix Method for Skew Diffusions. Potential Anal 45, 299–329 (2016). https://doi.org/10.1007/s11118-016-9547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-016-9547-0

Keywords

Mathematics Subject Classification (2010)

Navigation