Skip to main content
Log in

Three MAPK Kinases, MEK1, SIPKK, and NPK2, are not Involved in Activation of SIPK after Wounding and Herbivore Feeding but Important for Accumulation of Trypsin Proteinase Inhibitors

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

We identified three Nicotiana attenuata mitogen-activated protein kinase (MAPK) kinases (MAPKKs), NaMEK1, NaSIPKK, and NaNPK2, whose transcript levels were up-regulated in a wild tobacco plant, N. attenuata, after wounding and simulated herbivore attack. A virus-induced gene silencing approach was used to analyze the functions of these three MAPKKs in plant defense against the tobacco hornworm Manduca sexta. NaMEK1 and NaSIPKK influenced the accumulation of the precursor of jasmonic acid (JA), 12-oxo-phytodienoic acid, and silencing NaSIPKK enhanced the levels of wounding- and herbivory-induced JA. In-gel kinase assays indicated that all three MAPKKs were not required for the activation of NaSIPK, an important MAPK in plant responses to wounding and herbivory. However, NaMEK1, NaSIPKK, and NaNPK2 appeared to regulate the levels of trypsin proteinase inhibitor activity. Bioassays revealed that M. sexta larval growth was not impaired on N. attenuata plants silenced in NaMEK1, NaSIPKK, or NaNPK2 expression. Our findings suggest that NaSIPKK is involved in JA biosynthesis after herbivore attack without activating NaSIPK, suggesting that the network of MAPK signaling in N. attenuata's defense responses against herbivore attack is more complicated than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FACs:

Fatty acid–amino acid conjugates

JA:

Jasmonic acid

MAPKK:

Mitogen-activated protein kinase kinase

OPDA:

12-oxo-phytodienoic acid

SIPK:

Salicylic acid-induced protein kinase

TPI:

Trypsin proteinase inhibitor

VIGS:

Virus-induced gene silencing

WIPK:

Wound-induced protein kinase

References

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Glawe GA, Zavala JA, Kessler A, Van Dam NM (2003) Ecological costs and benefits correlated with trypsin protease inhibitor production in Nicotiana attenuata. Ecology 84:79–90

    Article  Google Scholar 

  • Bergmann DC, Lukowitz W, Somerville CR (2004) Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494–1497

    Article  PubMed  CAS  Google Scholar 

  • Cardinale F, Meskiene I, Ouaked F, Hirt H (2002) Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell 14:703–711

    PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  PubMed  CAS  Google Scholar 

  • Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S (2005) A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol 46:1902–1914

    Article  PubMed  CAS  Google Scholar 

  • Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid–amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 125:711–717

    Article  PubMed  CAS  Google Scholar 

  • Heberle-Bors E, Calderini O, Glab N, Bergounioux C, Wilson C (2001) A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43(Ntf6) MAP kinase. J Biol Chem 276:18139–18145

    Article  PubMed  Google Scholar 

  • Heinrich M, Wu JQ, Baldwin IT (2011) Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata. J Exp Bot 62:4355–4365

    Article  PubMed  CAS  Google Scholar 

  • Howe G (2011) The plant defense hormone jasmonate and its molecular mechanism of action. Phytopathology 101:S230–S230

    Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  PubMed  CAS  Google Scholar 

  • Hua ZM, Yang XC, Fromm ME (2006) Activation of the NaCl- and drought-induced RD29A and RD29B promoters by constitutively active Arabidopsis MAPKK or MAPK proteins (Retracted Article. See vol 29, pg 2253, 2006). Plant Cell Environ 29:1761–1770

    Article  PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Hayashida N, Seki M, Shinozaki K (1998) Molecular cloning and characterization of three cDNAs encoding putative mitogen-activated protein kinase kinases (MAPKKs) in Arabidopsis thaliana. DNA Res 5:341–348

    Article  PubMed  CAS  Google Scholar 

  • Kallenbach M, Alagna F, Baldwin IT, Bonaventure G (2010) Nicotiana attenuata SIPK, WIPK, NPR1, and fatty acid–amino acid conjugates participate in the induction of jasmonic acid biosynthesis by affecting early enzymatic steps in the pathway. Plant Physiol 152:96–106

    Article  PubMed  CAS  Google Scholar 

  • Kaur H, Heinzel N, Schöttner M, Baldwin IT, Galis I (2010) R2R3-NaMYB8 regulates the accumulation of phenylpropanoid–polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol 152:1731–1747

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklof S, Till S, Bogre L, Hirt H, Meskiene I (2000) SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell 12:2247–2258

    Article  PubMed  CAS  Google Scholar 

  • Kosetsu K, Matsunaga S, Nakagami H, Colcombet J, Sasabe M, Soyano T, Takahashi Y, Hirt H, Machida Y (2010) The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell 22:3778–3790

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Zeng WK, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716–720

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhou Y, Liu L, Sun L, Li D (2011) In silico identification and evolutionary analysis of plant MAPKK6s. Plant Mol Biol Rep 29:859–865

    Article  CAS  Google Scholar 

  • Lukowitz W, Roeder A, Parmenter D, Somerville C (2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116:109–119

    Article  PubMed  CAS  Google Scholar 

  • MAPK Group, Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  CAS  Google Scholar 

  • Meldau S, Wu J, Baldwin IT (2009) Silencing two herbivory-activated MAP kinases, SIPK and WIPK, does not increase Nicotiana attenuata's susceptibility to herbivores in the glasshouse and in nature. New Phytol 181:161–173

    Article  PubMed  CAS  Google Scholar 

  • Paschold A, Halitschke R, Baldwin IT (2007) Co(i)-ordinating defenses: NaCOI1 mediates herbivore-induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J 51:79–91

    Article  PubMed  CAS  Google Scholar 

  • Pedley KF, Martin GB (2005) Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol 8:541–547

    Article  PubMed  CAS  Google Scholar 

  • Roda A, Halitschke R, Steppuhn A, Baldwin IT (2004) Individual variability in herbivore-specific elicitors from the plant's perspective. Mol Ecol 13:2421–2433

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Saona CR, Musser RO, Vogel H, Hum-Musser SM, Thaler JS (2010) Molecular, biochemical, and organismal analyses of tomato plants simultaneously attacked by herbivores from two feeding guilds. J Chem Ecol 36:1043–1057

    Article  PubMed  CAS  Google Scholar 

  • Romeis T (2001) Protein kinases in the plant defence response. Curr Op Plant Biol 4:407–414

    Article  CAS  Google Scholar 

  • Saedler R, Baldwin IT (2004) Virus-induced gene silencing of jasmonate-induced direct defences, nicotine and trypsin proteinase-inhibitors in Nicotiana attenuata. J Exp Bot 55:151–157

    Article  PubMed  CAS  Google Scholar 

  • Schaller F, Schaller A, Stintzi A (2004) Biosynthesis and metabolism of jasmonates. J Plant Growth Regul 23:179–199

    CAS  Google Scholar 

  • Sheen J, Kovtun Y, Chiu WL, Tena G (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  PubMed  Google Scholar 

  • Shibata W, Banno H, Ito Y, Hirano K, Irie K, Usami S, Machida C, Machida Y (1995) A Tobacco protein-kinase, Npk2, has a domain homologous to a domain found in activators of mitogen-activated protein-kinases (Mapkks). Mol Gen Genet 246:401–410

    Article  PubMed  CAS  Google Scholar 

  • Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT (2004) Nicotine's defensive function in nature. PLoS Biol 2:E217

    Article  PubMed  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98:12837–12842

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • van Dam NM, Horn M, Mares M, Baldwin IT (2001) Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata. J Chem Ecol 27:547–568

    Article  PubMed  Google Scholar 

  • Vick BA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant-species. Plant Physiol 75:458–461

    Article  PubMed  CAS  Google Scholar 

  • Vick BA, Zimmermann DC (1979) Distribution of a fatty acid cyclase enzyme system in plants. Plant Physiol 64:203–205

    Article  PubMed  CAS  Google Scholar 

  • von Dahl C, Baldwin IT (2007) Deciphering the role of ethylene in plant–herbivore interactions. J Plant Growth Regul 26:201–209

    Article  CAS  Google Scholar 

  • Wang HC, Ngwenyama N, Liu YD, Walker JC, Zhang SQ (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73

    Article  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–1122

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Jia WS, Zhang JH (2009) AtMKK1 and AtMPK6 are involved in abscisic acid and sugar signaling in Arabidopsis seed germination. Plant Mol Biol 70:725–736

    Article  PubMed  CAS  Google Scholar 

  • Xiong LZ, Yang YN (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  PubMed  CAS  Google Scholar 

  • Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 98:741–746

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789–U781

    Article  PubMed  CAS  Google Scholar 

  • Zavala JA, Patankar AG, Gase K, Baldwin IT (2004a) Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata. Proc Natl Acad Sci USA 101:1607–1612

    Article  PubMed  CAS  Google Scholar 

  • Zavala JA, Patankar AG, Gase K, Hui D, Baldwin IT (2004b) Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defenses. Plant Physiol 134:1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Klessig DF (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9:809–824

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Liu Y (2001) Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell 13:1877–1889

    Article  PubMed  CAS  Google Scholar 

  • Zhang JH, Sun LW, Liu LL, Lian J, An SL, Wang X, Zhang J, Jin JL, Li SY, Xi JH (2010) Proteomic analysis of interactions between the generalist herbivore Spodoptera exigua (Lepidoptera: Noctuidae) and Arabidopsis thaliana. Plant Mol Biol Rep 28:324–333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Max Planck Society for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Wu.

Additional information

This work was funded by the Max Planck Society.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, M., Baldwin, I.T. & Wu, J. Three MAPK Kinases, MEK1, SIPKK, and NPK2, are not Involved in Activation of SIPK after Wounding and Herbivore Feeding but Important for Accumulation of Trypsin Proteinase Inhibitors. Plant Mol Biol Rep 30, 731–740 (2012). https://doi.org/10.1007/s11105-011-0388-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0388-0

Keywords

Navigation