Skip to main content
Log in

Generation of Arabidopsis Mutants by Heterologous Expression of a Full-Length cDNA Library from Tomato Fruits

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Heterologous expression of cDNA library in Arabidopsis and other plants has been used for gene identifications. To identify functions of tomato genes, we expressed a tomato full-length cDNA library in Arabidopsis thaliana and generated over 7,000 mutants. We constructed a tomato cDNA library with a plant transformation-ready binary vector that contained a higher percentage of full-length cDNAs since synthesized double-stranded cDNA was size-selected using gel electrophoresis, with cDNA sizes of 2–5 kb being gel-purified for ligation onto the binary vector. Sequencing of 81 cDNA clones indicates that 75% (61) are full-length genes, which is similar to sequencing of inserted cDNA in Arabidopsis. The library was used to transform Arabidopsis plants. Among the 7,000 mutants, one was found to be a dwarf due to the expression of an ATP synthase, and another vegetative mutant did not produce flowers even after 7 months. The technique was validated by reintroducing the tomato ribosomal protein L9 gene and can be used in any other plant species as a gene discovery tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bucher M, Schroeer B, Willmitzer L, Riesmeier JW (1997) Two genes encoding extension-like proteins are predominantly expressed in tomato root hair cells. Plant Mol Biol 35:497–508. doi:10.1023/A:1005869717158

    Article  PubMed  CAS  Google Scholar 

  • Chen PY, Wang CK, Soong SC, To KY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breed 11:287–293. doi:10.1023/A:1023475710642

    Article  CAS  Google Scholar 

  • Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, Tax FE, Yoshida S, Feldmann KA (2000) Lesions in the sterol Δ7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J 21:431–443. doi:10.1046/j.1365-313x.2000.00693.x

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Diener A, Hirschi K (2000) Heterologous expression for dominant-like gene activity. Trends Plant Sci 5:10–11. doi:10.1016/S1360-1385(99) 01512-5

    Article  PubMed  CAS  Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–82. doi:10.1111/j.1365-313X.1991.00071.x

    Article  CAS  Google Scholar 

  • Fujita M, Mizukado S, Fujita Y, Ichikawa T, Nakazawa M, Seki M, Matsui M, Yamaguchi-Shinozaki K, Shinozaki K (2007) Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system. Biochem Biophys Res Commun 364:250–257. doi:10.1016/j.bbrc.2007.09.124

    Article  PubMed  CAS  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  Google Scholar 

  • González-Carranza ZH, Rompa U, Peters JL, Bhatt AM, Wagstaff C, Stead AD, Roberts JA (2007) Hawaiian skirt: an F-box gene that regulates organ fusion and growth in Arabidopsis. Plant Physiol 144:1370–1382. doi:10.1104/pp. 106.092288

    Article  PubMed  CAS  Google Scholar 

  • Greenboim-Wainberg Y, Maymon I, Borochov R, Alvarez J, Olszewski N, Ori N, Eshed Y, Weiss D (2005) Cross talk between Gibberellin and Cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell 17:92–102. doi:10.1105/tpc.104.028472

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, Gage DA, Shachar-Hill Y (2000) Plant one-carbon metabolism and its engineering. Trends Plant Sci 5:206–213. doi:10.1016/S1360-1385(00)01599-5

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Sheldon CC, Olive MR, Walker AR, Zeevaart JA, Peacock WJ, Dennis ES (1998) Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proc Natl Acad Sci U S A 95:9019–9024. doi:10.1073/pnas.95.15.9019

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PD, Leonard JM, Lindberg GE, Bollmann SR, Hays JB (2004) Rapid accumulation of mutations during seed-to-seed propagation of mismatch-repair-defective Arabidopsis. Genes Dev 18:2676–2685. doi:10.1101/gad.1217204

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa T, Nakazawa M, Kawashima M, Iizumi H, Kuroda H, Kondou Y, Tsuhara Y, Suzuki K, Ishikawa A, Seki M, Fujita M, Motohashi R, Nagata N, Takagi T, Shinozaki K, Matsui M (2006) The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J 48:974–985. doi:10.1111/j.1365-313X.2006.02924.x

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jenks MA, Rashotte AM, Tuttle HA, Feldmann KA (1996) Mutants in Arabidopsis thaliana altered in epicuticular wax and leaf morphology. Plant Physiol 110:377–385

    PubMed  CAS  Google Scholar 

  • Lai MD, Xu J (2007) Ribosomal proteins and colorectal cancer. Curr Genomics 8:43–49. doi:10.2174/138920207780076938

    Article  PubMed  CAS  Google Scholar 

  • LeClere S, Bartel B (2001) A library of Arabidopsis 35S-cDNA lines for identifying novel mutants. Plant Mol Biol 46:695–703. doi:10.1023/A:1011699722052

    Article  PubMed  CAS  Google Scholar 

  • Lein W, Usadel B, Stitt M, Reindl A, Ehrhardt T, Sonnewald U, Börnke F (2008) Large-scale phenotyping of transgenic tobacco plants (Nicotiana tabacum) to identify essential leaf functions. Plant Biotechnol J 6:246–263. doi:10.1111/j.1467-7652.2007.00313.x

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Wallis JG, Browse J (2007) An analysis of expressed sequence tags of developing castor endosperm using a full-length cDNA library. BMC Plant Biol 7:42. doi:10.1186/1471-2229-7-42

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Hakata M, Amano K, Miyao A, Toki N, Kajikawa M, Pang J, Higashi N, Ando S, Toki S, Fujita M, Enju A, Seki M, Nakazawa M, Ichikawa T, Shinozaki K, Matsui M, Nagamura Y, Hirochika H, Ichikawa H (2007) A genome-wide gain-of function analysis of rice genes using the FOX-hunting system. Plant Mol Biol 65:357–3571. doi:10.1007/s11103-007-9243-y

    Article  PubMed  CAS  Google Scholar 

  • Obiadalla-Ali H, Fernie AR, Kossmann J, Lloyd JR (2004) Developmental analysis of carbohydrate metabolism in tomato (Lycopersicon esculentum cv. Micro-Tom) fruits. Physiol Plant 120:196–204. doi:10.1111/j.0031-9317.2004.0167.x

    Article  PubMed  CAS  Google Scholar 

  • Pinon V, Etchells JP, Rossignol P, Collier SA, Arroyo JM, Martienssen RA, Byrne ME (2008) Three PIGGYBACK genes that specifically influence leaf patterning encode ribosomal proteins. Development 135:1315–1324. doi:10.1242/dev.016469

    Article  PubMed  CAS  Google Scholar 

  • Prigge MJ, Wagner DR (2001) The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. Plant Cell 13:1263–1280

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A, Akiyama K, Oono Y, Muramatsu M, Hayashizaki Y, Kawai J, Carninci P, Itoh M, Ishii Y, Arakawa T, Shibata K, Shinagawa A, Shinozaki K (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145. doi:10.1126/science.1071006

    Article  PubMed  Google Scholar 

  • Schmitz RJ, Sung S, Amasino RM (2008) Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:411–416. doi:10.1073/pnas.0710423104

    Article  PubMed  CAS  Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088. doi:10.1093/nar/23.6.1087

    Article  PubMed  CAS  Google Scholar 

  • Stacey NJ, Kuromori T, Azumi Y, Roberts G, Breuer C, Wada T, Maxwell A, Roberts K, Sugimoto-Shirasu K (2006) Arabidopsis SPO11–2 functions with SPO11–1 in meiotic recombination. Plant J 48:206–216. doi:10.1111/j.1365-313X.2006.02867.x

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Chen ZJ (2001) Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc Natl Acad Sci U S A 98:200–205. doi:10.1073/pnas.011347998

    Article  PubMed  CAS  Google Scholar 

  • Vivian-Smith A, Luo M, Chaudhury A, Koltunow A (2001) Fruit development is actively restricted in the absence of fertilization in Arabidopsis. Development 128:2321–2331

    PubMed  CAS  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359. doi:10.1104/pp.127.1.345

    Article  PubMed  CAS  Google Scholar 

  • Wellenreuther R, Schupp I, Poustka A, Wiemann S (2004) The German cDNA Consortium. SMART amplification combined with cDNA size fractionation in order to obtain large full-length clones. BMC Genomics 5:36. doi:10.1186/1471-2164-5-36

    Article  PubMed  Google Scholar 

  • Yamamoto N, Tsugane T, Watanabe M, Yano K, Maeda F, Kuwata C, Torki M, Ban Y, Nishimura S, Shibata D (2005) Expressed sequence tags from the laboratory-grown miniature tomato (Lycopersicon esculentum) cultivar Micro-Tom and mining for single nucleotide polymorphisms and insertions/deletions in tomato cultivars. Gene 356:127–134. doi:10.1016/j.gene.2005.04.026

    Article  PubMed  Google Scholar 

  • Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30:892–897

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by Penn State Erie, The Behrend College. CMM, ASK, MKR, and ADJ were supported in part by Penn State Behrend Undergraduate Student Academic Year Research Grant Program and Undergraduate Student Summer Research Fellowship Program. Daryl J. Nowacki participated in the early phase of the project. We thank Michael A. Campbell and James T. Warren for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YH., Mosebach, C.M., Kibbey, A.S. et al. Generation of Arabidopsis Mutants by Heterologous Expression of a Full-Length cDNA Library from Tomato Fruits. Plant Mol Biol Rep 27, 454–461 (2009). https://doi.org/10.1007/s11105-009-0111-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0111-6

Keywords

Navigation