Skip to main content

Advertisement

Log in

Interactive effects of nitrogen deposition and drought-stress on plant-soil feedbacks of Artemisia californica seedlings

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Nitrogen (N) deposition and drought are major drivers of global change that will influence plant-soil feedbacks. We investigated how N availability, N-impacted soil communities and drought affect feedback in seedlings of a drought-deciduous mycorrhizal shrub, Artemisia californica.

Methods

Seedlings were inoculated with soil from either a high or low deposition site or sterilized inoculum and grown with or without supplemental N and under well-watered or drought-stressed conditions.

Results

Inoculum, N and water had interactive effects on feedbacks. Seedlings grown in low deposition inoculum exhibited a neutral to positive feedback under drought and had the highest root to shoot ratios and mycorrhizal colonization. Seedlings inoculated with high N-deposition soil experienced a positive feedback when N fertilized and well-watered, but plants allocated large amounts of biomass to shoots and had a negative response to drought.

Conclusions

The soil community mediates plant response to varying belowground resource availability. We found N-impacted communities may reduce mycorrhizal colonization and allocation to roots and provide less protection against drought. Our results highlight the context dependency of plant-soil feedbacks and the potential for climate change and N deposition to have interactive effects on these relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts R, Boot R, Van der Aart P (1991) The relation between above-and belowground biomass allocation patterns and competitive ability. Oecologia 87:551–559

    Article  Google Scholar 

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297. doi:10.2136/Vzj2006.0068

    Article  Google Scholar 

  • Allen EB, Padgett P, Bytnerowicz A, Minnich RA (1998) Nitrogen deposition effects on coastal sage vegetation of Southern California Proceedings of the International Symposium on Air Pollution and Climate Change Effects on Forest Ecosystem

  • Allen EB et al. (2000) What are the limits to restoration of coastal sage scrub in southern California 2nd Interface between ecology and land development in California. USGS Report 00-62:253–262

    Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Báez S, Fargione J, Moore D, Collins S, Gosz J (2007) Atmospheric nitrogen deposition in the northern chihuahuan desert: temporal trends and potential consequences. J Arid Environ 68:640–651

    Article  Google Scholar 

  • Barber D (1978) Nutrient uptake. In: Interactions between non-pathogenic soil microorganisms and plants. Elsevier, New York, pp 131–162

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Bell JL, Sloan LC, Snyder MA (2004) Regional changes in extreme climatic events: a future climate scenario. J Clim 17:81–87. doi:10.1175/1520-0442(2004)017<0081:Rciece>2.0.Co;2

    Article  Google Scholar 

  • Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573

    Article  Google Scholar 

  • Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169:895–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Bobbink R et al. (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. doi:10.1890/08-1140.1

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Caporaso S, Allegrezza M (2006) Short-term effects of nitrogen enrichment, litter removal and cutting on a Mediterranean grassland. Acta Oecol 30:419–425

    Article  Google Scholar 

  • Bozzolo FH, Lipson DA (2013) Differential responses of native and exotic coastal sage scrub plant species to N additions and the soil microbial community. Plant Soil 371:37–51. doi:10.1007/s11104-013-1668-2

    Article  CAS  Google Scholar 

  • Brooks ML (2003) Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. J Appl Ecol 40:344–353

    Article  Google Scholar 

  • Carreiro M, Sinsabaugh R, Repert D, Parkhurst D (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  • Chapin FS, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37:49–57

    Article  Google Scholar 

  • Cook R, Papendick R (1972) Influence of water potential of soils and plants on root disease. Annu Rev Phytopathol 10:349–374

    Article  Google Scholar 

  • Corkidi L, Rowland DL, Johnson NC, Allen EB (2002) Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant Soil 240:299–310. doi:10.1023/A:1015792204633

    Article  CAS  Google Scholar 

  • Cox RD, Allen EB (2008) Stability of exotic annual grasses following restoration efforts in southern California coastal sage scrub. J Appl Ecol 45:495–504. doi:10.1111/j.1365-2664.2007.01437.x

    Article  Google Scholar 

  • Cox RD, Preston KL, Johnson RF, Minnich RA, Allen EB (2014) Influence of landscape-scale variables on vegetation conversion to exotic annual grassland in Southern California USA. Glob Ecol Conserv 2:190–203. doi:10.1016/j.gecco.2014.09.008

    Article  Google Scholar 

  • De Marco A, Proietti C, Cionni I, Fischer R, Screpanti A, Vitale M (2014) Future impacts of nitrogen deposition and climate change scenarios on forest crown defoliation. Environ Pollut 194:171–180. doi:10.1016/j.envpol.2014.07.027

    Article  PubMed  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496. doi:10.1890/1051-0761(2000)010[0484:Siamca]2.0.Co;2

    Article  Google Scholar 

  • Egerton-Warburton LM, Graham RC, Allen EB, Allen MF (2001) Reconstruction of the historical changes in mycorrhizal fungal communities under anthropogenic nitrogen deposition. Proc Biol Sci 268:2479–2484 doi:10.1098/rspb.2001.1844

  • Eisenhauer N, Cesarz S, Koller R, Worm K, Reich PB (2012) Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob Chang Biol 18:435–447. doi:10.1111/j.1365-2486.2011.02555.x

    Article  Google Scholar 

  • Eliason SA, Allen EB (1997) Exotic grass competition in suppressing native shrubland re-establishment. Restor Ecol 5:245–255

    Article  Google Scholar 

  • Farrar J, Williams M (1991) The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant Cell Environ 14:819–830

    Article  CAS  Google Scholar 

  • Fenn ME et al. (2003) Ecological effects of nitrogen deposition in the western United States. Bioscience 53:404–420. doi:10.1641/0006-3568(2003)053[0404:Eeondi]2.0.Co;2

    Article  Google Scholar 

  • Fenn ME et al. (2010) Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. J Environ Manage 91:2404–2423. doi:10.1016/j.jenvman.2010.07.034

    Article  CAS  PubMed  Google Scholar 

  • Fenner M (1987) Seedlings. New Phytol 106:35–47

    Article  Google Scholar 

  • Friedrich U, von Oheimb G, Kriebitzsch WU, Schlesselmann K, Weber MS, Hardtle W (2012) Nitrogen deposition increases susceptibility to drought - experimental evidence with the perennial grass Molinia caerulea (L) Moench. Plant Soil 353:59–71. doi:10.1007/s11104-011-1008-3

    Article  CAS  Google Scholar 

  • Galloway JN (2005) The global nitrogen cycle: past, present and future. Sci China Ser C 48:669–677. doi:10.1360/062005-261

    CAS  Google Scholar 

  • Galloway JN et al. (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. doi:10.1126/science.1136674

    Article  CAS  PubMed  Google Scholar 

  • Gedroc J, McConnaughay K, Coleman J (1996) Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? Funct Ecol 44-50

  • Griffin D, Anchukaitis KJ (2014) How unusual is the 2012–2014 California drought? Geophys Res Lett 41:9017–9023. doi:10.1002/2014gl062433

    Article  Google Scholar 

  • Harrison A, Small E, Mooney H (1971) Drought relationships and distribution of two mediterranean-climate california plant communities. Ecology 52:869–875

    Article  Google Scholar 

  • Hilbert DW, Canadell J (1995) Biomass partitioning and resource allocation of plants from Mediterranean-type ecosystems: possible responses to elevated atmospheric CO2. Global change and Mediterranean-type ecosystems. Springer, pp 76–101

  • Hilbig B, Allen E (2015) Plant-soil feedbacks and competitive interactions between invasive Bromus diandrus and native forb species. Plant Soil:1–13. doi:10.1007/s11104-015-2451-3

  • Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2007) Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities. Plant Cell Environ 30:1599–1609

    Article  PubMed  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Bull Ecol Soc Am 3:749–757

    Google Scholar 

  • Johnson N, Graham JH, Smith F (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum*. New Phytol 135:575–585

    Article  Google Scholar 

  • Johnson D, Leake J, Lee J, Campbell C (1998) Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands. Environ Pollut 103:239–250

    Article  CAS  Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908. doi:10.1890/0012-9658(2003)084[1895:Neamaa]2.0.Co;2

    Article  Google Scholar 

  • Jones C (2000) Occurrence of extreme precipitation events in California and relationships with the Madden-Julian oscillation. J Climate 13:3576–3587. doi:10.1175/1520-0442(2000)013<3576:Ooepei>2.0.Co;2

    Article  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143

    Article  CAS  PubMed  Google Scholar 

  • Keeley JE, Fotheringham C, Baer-Keeley M (2006) Demographic patterns of postfire regeneration in Mediterranean-climate shrublands of California. Ecol Monogr 76:235–255

    Article  Google Scholar 

  • Kimball S, Goulden ML, Suding KN, Parker S (2014) Altered water and nitrogen input shifts succession in a Southern California coastal sage community. Ecol Appl 24:1390–1404

    Article  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  CAS  PubMed  Google Scholar 

  • Kolb KJ, Davis SD (1994) Drought tolerance and xylem embolism in co-occurring species of coastal sage and chaparral. Ecology 75:648–659

    Article  Google Scholar 

  • Koske R, Gemma J (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488

    Article  Google Scholar 

  • Lekberg Y, Koide RT (2013) Integrating physiological, community, and evolutionary perspectives on the arbuscular mycorrhizal symbiosis 1. Botany 92:241–251

    Article  Google Scholar 

  • Lloret F, Casanovas C, Penuelas J (1999) Seedling survival of Mediterranean shrubland species in relation to root: shoot ratio, seed size and water and nitrogen use. Funct Ecol 13:210–216

    Article  Google Scholar 

  • Manning P, Morrison S, Bonkowski M, Bardgett RD (2008) Nitrogen enrichment modifies plant community structure via changes to plant–soil feedback. Oecologia 157:661–673

    Article  CAS  PubMed  Google Scholar 

  • McGonigle T, Miller M, Evans D, Fairchild G, Swan J (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Meijer SS, Holmgren M, Van der Putten WH (2011) Effects of plant–soil feedback on tree seedling growth under arid conditions. J Plant Ecol 4:193–200. doi:10.1093/jpe/rtr011

    Article  Google Scholar 

  • Meisner A, De Deyn GB, de Boer W, van der Putten WH (2013) Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proc Natl Acad Sci U S A 110:9835–9838. doi:10.1073/pnas.1300922110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer-GrüNefeldt M, Friedrich U, Klotz M, Von Oheimb G, HäRdtle W (2013) Nitrogen deposition and drought events have non-additive effects on plant growth–Evidence from greenhouse experiments. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 149:1–9

  • Minnich RA, Dezzani RJ (1998) Historical decline of coastal Sage Scrub in the Riverside-Perris Plain California. Western Birds 29:366–391

    Google Scholar 

  • Mohan JE et al. (2014) Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol 10:3–19. doi:10.1016/j.funeco.2014.01.005

    Article  Google Scholar 

  • Moles AT, Westoby M (2004) What do seedlings die from and what are the implications for evolution of seed size? Oikos 106:193–199

    Article  Google Scholar 

  • Ochoa-Hueso R, Manrique E (2010) Nitrogen fertilization and water supply affect germination and plant establishment of the soil seed bank present in a semi-arid Mediterranean scrubland. Plant Ecol 210:263–273

    Article  Google Scholar 

  • Ochoa-Hueso R, Pérez-Corona ME, Manrique E (2013) Impacts of simulated N deposition on plants and mycorrhizae from spanish semiarid mediterranean shrublands. Ecosystems 16:838–851

    Article  CAS  Google Scholar 

  • Packer A, Clay K (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404:278–281

    Article  CAS  PubMed  Google Scholar 

  • Padgett PE, Allen EB (1999) Differential responses to nitrogen fertilization in native shrubs and exotic annuals common to mediterranean coastal sage scrub of California. Plant Ecol 144:93–101. doi:10.1023/A:1009895720067

    Article  Google Scholar 

  • Padilla F, Pugnaire F (2007) Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct Ecol 21:489–495

    Article  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Funct Plant Biol 27:1191–1191

    Article  Google Scholar 

  • Pratt JD, Mooney KA (2013) Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change. Glob Change Biol 19:2454–2466. doi:10.1111/Gcb.12199

    Article  Google Scholar 

  • Rao LE, Allen EB (2010) Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts. Oecologia 162:1035–1046. doi:10.1007/s00442-009-1516-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds H, D’antonio C (1996) The ecological significance of plasticity in root weight ratio in response to nitrogen: opinion. Plant Soil 185:75–97

    Article  CAS  Google Scholar 

  • Saiya-Cork K, Sinsabaugh R, Zak D (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    Article  CAS  Google Scholar 

  • Schenck N, Perez Y (1990) Manual for identification of vesicular arbuscular mycorrhizal fungi (INVAM) University of Florida, Gainesville

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048. doi:10.1126/science.247.4946.1043

    Article  CAS  PubMed  Google Scholar 

  • Schwinning S, Starr BI, Wojcik NJ, Miller ME, Ehleringer JE, Sanford Jr RL (2005) Effects of nitrogen deposition on an arid grassland in the Colorado Plateau Cold Desert. Rangel Ecol Manag 58:565–574

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105

    Article  Google Scholar 

  • Sigüenza C, Corkidi L, Allen EB (2006a) Feedbacks of soil inoculum of mycorrhizal fungi altered by n deposition on the growth of a native shrub and an invasive annual grass. Plant Soil 286:153–165. doi:10.1007/s11104-006-9034-2

    Article  Google Scholar 

  • Sigüenza C, Crowley DE, Allen EB (2006b) Soil microorganisms of a native shrub and exotic grasses along a nitrogen deposition gradient in southern California. Appl Soil Ecol 32:13–26. doi:10.1016/j.apsoil.2005.02.015

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  • Southon GE, Green ER, Jones AG, Barker CG, Power SA (2012) Long-term nitrogen additions increase likelihood of climate stress and affect recovery from wildfire in a lowland heath. Glob Chang Biol 18:2824–2837. doi:10.1111/j.1365-2486.2012.02732.x

    Article  PubMed  Google Scholar 

  • Staddon PL, Fitter AH (1998) Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas? Trends Ecol Evol 13:455–458

    Article  CAS  PubMed  Google Scholar 

  • Talluto MV, Suding KN (2008) Historical change in coastal sage scrub in Southern California, USA in relation to fire frequency and air pollution. Landsc Ecol 23:803–815. doi:10.1007/s10980-008-9238-3

    Article  Google Scholar 

  • Tonnesen GS, Wang ZW, Omary M, Vhien CJ (2007) Assessment of nitrogen deposition: modeling and habitat assessment California Energy Commission. PIER Energy-Related Environmental Research CEC-500-2005-032. http://www.energy.ca.gov/2006publications/CEC-500-2006-032/CEC-500-2006-032.pdf

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120. doi:10.1111/j.1461-0248.2008.01230.x

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363. doi:10.1111/j.1461-0248.2008.01250.x

    Article  PubMed  Google Scholar 

  • Van der Putten W, Van Dijk C, Peters B (1993) Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–56

    Article  Google Scholar 

  • Van der Putten WH, Vet LE, Harvey JA, Wäckers FL (2001) Linking above-and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554

    Article  Google Scholar 

  • Van der Putten WH et al. (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276

    Article  Google Scholar 

  • Vitousek PM et al. (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750. doi:10.2307/2269431

    Google Scholar 

  • Vourlitis GL, Zorba G, Pasquini SC, Mustard R (2007) Chronic nitrogen deposition enhances nitrogen mineralization potential of semiarid shrubland soils. Soil Sci Soc Am J 71:836–842

    Article  CAS  Google Scholar 

  • Wallenstein MD, McNulty S, Fernandez IJ, Boggs J, Schlesinger WH (2006) Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. For Ecol Manag 222:459–468

    Article  Google Scholar 

  • Westman WE (1981) Factors influencing the distribution of species of Californian coastal Sage Scrub. Ecology 62:439–455. doi:10.2307/1936717

    Article  Google Scholar 

  • Wolters V et al. (2000) Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning. Bioscience 50:1089–1098. doi:10.1641/0006-3568(2000)050[1089:EOGCOA]2.0.CO;2

    Article  Google Scholar 

  • Wood YA, Meixner T, Shouse PJ, Allen EB (2006) Altered ecohydrologic response drives native shrub loss under conditions of elevated nitrogen deposition. J Environ Qual 35:76–92. doi:10.2134/jecl2004.0465

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Bao W, Li F, Wu N (2008) Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environ Exp Bot 63:248–255

    Article  CAS  Google Scholar 

  • Yoshida LC, Allen EB (2001) Response to ammonium and nitrate by a mycorrhizal annual invasive grass and native shrub in southern California. Am J Bot 88:1430–1436. doi:10.2307/3558450

    Article  CAS  PubMed  Google Scholar 

  • Zavaleta ES, Shaw MR, Chiariello NR, Mooney HA, Field CB (2003) Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc Natl Acad Sci 100:7650–7654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng D-H, Li L-J, Fahey TJ, Yu Z-Y, Fan Z-P, Chen F-S (2010) Effects of nitrogen addition on vegetation and ecosystem carbon in a semi-arid grassland. Biogeochemistry 98:185–193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded in part by the California Native Plant Society’s Educational Grant and the National Park Service Air Resource Division (TASK AGREEMENT NO. J8C07110022). We would like to thank Dr. Irina Irvine for field and logistical support, Dr. Bridget Hilbig, Amanda Haraksin and especially Erin Reilly for greenhouse and lab assistance and Dr. Alexandria Pivovaroff and two anonymous reviewers for valuable feedback on a previous draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin M. Valliere.

Additional information

Responsible Editor: Alfonso Escudero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valliere, J.M., Allen, E.B. Interactive effects of nitrogen deposition and drought-stress on plant-soil feedbacks of Artemisia californica seedlings. Plant Soil 403, 277–290 (2016). https://doi.org/10.1007/s11104-015-2776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2776-y

Keywords

Navigation