Skip to main content
Log in

Expression profile of calcium-dependent protein kinase (CDPKs) genes during the whole lifespan and under phytohormone treatment conditions in rice (Oryza sativa L. ssp. indica)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Calcium-dependent protein kinases (CDPKs) control plant development and response to various stress environments through the important roles in the regulation of Ca2+ signaling. Thirty-one CDPK genes have been identified in the rice genome by a complete search of the genome based upon HMM profiles. In this study, the expression of this gene family was analyzed using the Affymetrix rice genome array in three rice cultivars: Minghui 63, Zhenshan 97, and their hybrid Shanyou 63 independently. Twenty-seven tissues sampled throughout the entire rice life-span were studied, along with three hormone treatments (GA3, NAA and KT), applied to the seedling at the trefoil stage. All 31 genes were found to be expressed in at least one of the experimental stages studied and revealed diverse expression patterns. We identified differential expression of the OsCPK genes in the stamen (1 day before flowering), the panicle (at the heading stage), the endosperm (days after pollination) and also in callus, in all three cultivars. Eight genes, OsCPK2, OsCPK11, OsCPK14, OsCPK22, OsCPK25, OsCPK26, OsCPK27 and OsCPK29 were found dominantly expressed in the panicle and the stamen, and five genes, OsCPK6, OsCPK7, OsCPK12, OsCPK23 and OsCPK31 were up-regulated in the endosperm stage. The OsCPK genes were also found to be regulated in rice seedlings subjected to different hormone treatment conditions, however their expression were not the same for all varieties. These diverse expression profiles trigger the functional analysis of the CDPK family in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S (2004) OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol Biol 55:541–552. doi:10.1007/s11103-004-1178-y

    Article  PubMed  CAS  Google Scholar 

  • Abo-el-Saad M, Wu R (1995) A rice membrane calcium-dependent protein kinase is induced by gibberellin. Plant Physiol 108:787–793. doi:10.1104/pp.108.2.787

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Anil VS, Sankara Rao K (2001) Purification and characterization of a Ca(2+)-dependent protein kinase from sandalwood (Santalum album L.): evidence for Ca(2+)-induced conformational changes. Phytochemistry 58:203–212. doi:10.1016/S0031-9422(01)00231-X

    Article  PubMed  CAS  Google Scholar 

  • Anil VS, Harmon AC, Rao KS (2000) Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis, seed development, and germination in sandalwood. Plant Physiol 122:1035–1043. doi:10.1104/pp.122.4.1035

    Article  PubMed  CAS  Google Scholar 

  • Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu CY, Tada Y, Satozawa T, Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14:619–628. doi:10.1105/tpc.010454

    Article  PubMed  CAS  Google Scholar 

  • Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46:356–366. doi:10.1093/pcp/pci035

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141. doi:10.1093/nar/gkh121

    Article  PubMed  CAS  Google Scholar 

  • Breviario D, Morello L, Giani S (1995) Molecular cloning of two novel rice cDNA sequences encoding putative calcium-dependent protein kinases. Plant Mol Biol 27:953–967. doi:10.1007/BF00037023

    Article  PubMed  CAS  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485. doi:10.1104/pp.005645

    Article  PubMed  CAS  Google Scholar 

  • Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761. doi:10.1104/pp.105.069757

    Article  PubMed  CAS  Google Scholar 

  • Christodoulou J, Malmendal A, Harper JF, Chazin WJ (2004) Evidence for differing roles for each lobe of the calmodulin-like domain in a calcium-dependent protein kinase. J Biol Chem 279:29092–29100. doi:10.1074/jbc.M401297200

    Article  PubMed  CAS  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763. doi:10.1093/bioinformatics/14.9.755

    Article  PubMed  CAS  Google Scholar 

  • Estruch JJ, Kadwell S, Merlin E, Crossland L (1994) Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc Natl Acad Sci USA 91:8837–8841. doi:10.1073/pnas.91.19.8837

    Article  PubMed  CAS  Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol 4:415–420. doi:10.1016/S1369-5266(00)00194-1

    Article  PubMed  CAS  Google Scholar 

  • Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238. doi:10.1093/nar/30.1.235

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738

    Article  PubMed  CAS  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026. doi:10.1360/yc-007-1023

    PubMed  CAS  Google Scholar 

  • Harmon AC (2003) Calcium-regulated protein kinases of plants. Gravit Space Biol Bull 16:83–90

    PubMed  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs - a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159. doi:10.1016/S1360-1385(00)01577-6

    Article  PubMed  CAS  Google Scholar 

  • Harmon AC, Gribskov M, Gubrium E, Harper JF (2001) The CDPK superfamily of protein kinases. New Phytol 151:175–183. doi:10.1046/j.1469-8137.2001.00171.x

    Article  CAS  Google Scholar 

  • Harper JF, Harmon A (2005) Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol 6:555–566. doi:10.1038/nrm1679

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187. doi:10.1146/annurev.cellbio.17.1.159

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM, Trewavas A (1982) Calcium-dependent protein kinase in pea shoot membranes. FEBS Lett 145:67–71. doi:10.1016/0014-5793(82)81208-8

    Article  CAS  Google Scholar 

  • Hrabak EM, Dickmann LJ, Satterlee JS, Sussman MR (1996) Characterization of eight new members of the calmodulin-like domain protein kinase gene family from Arabidopsis thaliana. Plant Mol Biol 31:405–412. doi:10.1007/BF00021802

    Article  PubMed  CAS  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680. doi:10.1104/pp.102.011999

    Article  PubMed  CAS  Google Scholar 

  • Johnson DR, Bhatnagar RS, Knoll LJ, Gordon JI (1994) Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem 63:869–914. doi:10.1146/annurev.bi.63.070194.004253

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A (2003) Collection, mapping, and annotation of over 28, 000 cDNA clones from japonica rice. Science 301:376–379. doi:10.1126/science.1081288

    Article  PubMed  Google Scholar 

  • Klimecka M, Muszynska G (2007) Structure and functions of plant calcium-dependent protein kinases. Acta Biochim Pol 54:219–233

    PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150

    Article  PubMed  CAS  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57:1341–1351. doi:10.1093/jxb/erj109

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Zhu W, Silva JC, Gu X, Buell CR (2006) Intron gain and loss in segmentally duplicated genes in rice. Genome Biol 7:41. doi:10.1186/gb-2006-7-5-r41

    Article  Google Scholar 

  • Liu Z, Xia M, Poovaiah BW (1998) Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms. Plant Mol Biol 38:889–897. doi:10.1023/A:1006019001200

    Article  PubMed  CAS  Google Scholar 

  • Ma SY, Wu WH (2007) AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65:511–518. doi:10.1007/s11103-007-9187-2

    Article  PubMed  CAS  Google Scholar 

  • Martin ML, Busconi L (2000) Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J 24:429–435. doi:10.1046/j.1365-313x.2000.00889.x

    Article  PubMed  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250. doi:10.1126/science.1143609

    Article  PubMed  CAS  Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-Ca(2+)-permeable channels and stomatal closure. PLoS Biol 4:e327. doi:10.1371/journal.pbio.0040327

    Article  PubMed  Google Scholar 

  • Moutinho A, Trewavas AJ, Malho R (1998) Relocation of a Ca2+-dependent protein kinase activity during pollen tube reorientation. Plant Cell 10:1499–1510

    Article  PubMed  CAS  Google Scholar 

  • Poovaiah BW, Xia M, Liu Z, Wang W, Yang T, Sathyanarayanan PV, Franceschi VR (1999) Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers. Planta 209:161–171. doi:10.1007/s004250050618

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Agarwal P, Arora R, Kapoor S, Tyagi AK (2007) Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics 278:493–505. doi:10.1007/s00438-007-0267-4

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Wen LP, Gao XJ, Jin CJ, Xue Y, Yao XB (2008) CSS-palm 2.0: an web sever for palmitoylation site prediction. Protein Eng Des Sel 21:639–644

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69. doi:10.1126/science.1150646

    Article  PubMed  CAS  Google Scholar 

  • Roy SW, Penny D (2007) Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol Biol Evol 24:171–181. doi:10.1093/molbev/msl159

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Sheen J, Izui K (1997) cDNA cloning and prokaryotic expression of maize calcium-dependent protein kinases. Biochim Biophys Acta 1350:109–114

    PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327. doi:10.1046/j.1365-313x.2000.00787.x

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14(Suppl):S401–S417

    Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902. doi:10.1126/science.274.5294.1900

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Koishihara H, Saito Y, Arashima Y, Furukawa T, Hayashi H (2004) A rice antisense SPK transformant that lacks the accumulation of seed storage substances shows no correlation between sucrose concentration in phloem sap and demand for carbon sources in the sink organs. Plant Cell Physiol 45:1105–1109. doi:10.1093/pcp/pch122

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  PubMed  CAS  Google Scholar 

  • Towler DA, Gordon JI, Adams SP, Glaser L (1988) The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem 57:69–99

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ, Malho R (1998) Ca2+ signalling in plant cells: the big network!. Curr Opin Plant Biol 1:428–433. doi:10.1016/S1369-5266(98)80268-9

    Article  PubMed  CAS  Google Scholar 

  • Ulloa RM, Raices M, MacIntosh GC, Maldonado S, Tellez-Inon MT (2002) Jasmonic acid affects plant morphology and calcium-dependent protein kinase expression and activity in Solanum tuberosum. Physiol Plant 115:417–427. doi:10.1034/j.1399-3054.2002.1150312.x

    Article  PubMed  CAS  Google Scholar 

  • Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K (1994) Two genes that encode Ca(2+)-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gen Genet 244:331–340. doi:10.1007/BF00286684

    Article  PubMed  CAS  Google Scholar 

  • Wan B, Lin Y, Mou T (2007) Expression of rice Ca(2+)-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett 581:1179–1189. doi:10.1016/j.febslet.2007.02.030

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Irizarry RA, Gentleman R, Murillo FM (2004) A model based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 99:909–917. doi:10.1198/016214504000000683

    Article  Google Scholar 

  • Yang G, Shen S, Yang S, Komatsu S (2003) OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellin. Plant Physiol Biochem 41:369–374. doi:10.1016/S0981-9428(03)00032-9

    Article  CAS  Google Scholar 

  • Yoon GM, Cho HS, Ha HJ, Liu JR, Lee HS (1999) Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol Biol 39:991–1001. doi:10.1023/A:1006170512542

    Article  PubMed  CAS  Google Scholar 

  • Yoon GM, Dowd PE, Gilroy S, McCubbin AG (2006) Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18:867–878. doi:10.1105/tpc.105.037135

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92. doi:10.1126/science.1068037

    Article  PubMed  CAS  Google Scholar 

  • Yu XC, Li MJ, Gao GF, Feng HZ, Geng XQ, Peng CC, Zhu SY, Wang XJ, Shen YY, Zhang DP (2006) Abscisic acid stimulates a calcium-dependent protein kinase in grape berry. Plant Physiol 140:558–579. doi:10.1104/pp.105.074971

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F, Wortman J, Buell CR (2005) The institute for genomic research Osa1 rice genome annotation database. Plant Physiol 138:18–26. doi:10.1104/pp.104.059063

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Liang S, Lu YT (2005) Cloning and functional characterization of NtCPK4, a new tobacco calcium-dependent protein kinase. Biochim Biophys Acta 1729:174–185

    PubMed  CAS  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036. doi:10.1105/tpc.107.050666

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China, the National High Technology Research and Development Program of China (863 Program) and the National Program on Research and Development of Transgenic Plants. We thank Dr John Bennett for helpful suggestions for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Lin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, S., Wang, L., Xie, W. et al. Expression profile of calcium-dependent protein kinase (CDPKs) genes during the whole lifespan and under phytohormone treatment conditions in rice (Oryza sativa L. ssp. indica). Plant Mol Biol 70, 311–325 (2009). https://doi.org/10.1007/s11103-009-9475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9475-0

Keywords

Navigation