Skip to main content

Advertisement

Log in

Expression of the pituitary stem/progenitor marker GFRα2 in human pituitary adenomas and normal pituitary

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Recent studies suggest that adult pituitary stem cells may play a role in pituitary tumorigenesis. We sought to explore whether the Glial cell-line derived neurotrophic factor receptor alpha 2 (GFRα2), a recently described pituitary stem/progenitor marker, might be differentially expressed in pituitary adenomas versus normal pituitary.

Methods

The expression of GFRα2 and other members of the GFR receptor family (GFRα1, α3, α4) were analyzed using RT-PCR, western blot, and immunohistochemistry in 39 pituitary adenomas, 14 normal pituitary glands obtained at autopsy, and cDNA from 3 normal pituitaries obtained commercially.

Results

GFRα2 mRNA was ~2.6 fold under-expressed in functioning adenomas (p < 0.01) and ~3.5 fold over-expressed in non-functioning adenomas (NFAs) (p < 0.05) compared to normal pituitary. Among NFAs, GFRα2 was significantly over-expressed (~5-fold) in the gonadotropinoma subtype only (p < 0.05). GFRα2 protein expression appeared to be higher in most NFAs, although there was heterogeneity in protein expression in this group. GFRα2 protein expression appeared consistently lower in functioning adenomas by IHC and western blot. In normal pituitary, GFRα2 was localized in Rathke’s remnant, the putative pituitary stem cell niche, and in corticotropes.

Conclusion

Our results suggest that the pituitary stem cell marker GFRα2 is under-expressed in functioning adenomas and over-expressed in NFAs, specifically gonadotropinomas. Further studies are required to elucidate whether over-expression of GFRα2 in gonadotropinomas might play a role in pituitary tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Castinetti F, Davis SW, Brue T, Camper SA (2011) Pituitary stem cell update and potential implications for treating hypopituitarism. Endocr Rev 32(4):453–471. doi:10.1210/er.2010-0011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Florio T (2011) Adult pituitary stem cells: from pituitary plasticity to adenoma development. Neuroendocrinology 94(4):265–277

    Article  CAS  PubMed  Google Scholar 

  3. Rostad S (2012) Pituitary adenoma pathogenesis: an update. Curr Opin Endocrinol Diabetes Obes 19(4):322–327. doi:10.1097/MED.0b013e328354b2e2

    Article  CAS  PubMed  Google Scholar 

  4. Gaston-Massuet C, Andoniadou CL, Signore M, Jayakody SA, Charolidi N, Kyeyune R, Vernay B, Jacques TS, Taketo MM, Le Tissier P, Dattani MT, Martinez-Barbera JP (2011) Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci USA 108(28):11482–11487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hosoyama T, Nishijo K, Garcia MM, Schaffer BS, Ohshima-Hosoyama S, Prajapati SI, Davis MD, Grant WF, Scheithauer BW, Marks DL, Rubin BP, Keller C (2010) A postnatal Pax7 progenitor gives rise to pituitary adenomas. Genes Cancer 1(4):388–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Xu Q, Yuan X, Tunici P, Liu G, Fan X, Xu M, Hu J, Hwang JY, Farkas DL, Black KL, Yu JS (2009) Isolation of tumour stem-like cells from benign tumours. Br J Cancer 101(2):303–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, Ryan AK, Blasco MA, Dieguez C, Malumbres M, Alvarez CV (2009) A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One 4(3):e4815

    Article  PubMed Central  PubMed  Google Scholar 

  8. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3(5):383–394

    Article  CAS  PubMed  Google Scholar 

  9. Japon MA, Urbano AG, Saez C, Segura DI, Cerro AL, Dieguez C, Alvarez CV (2002) Glial-derived neurotropic factor and RET gene expression in normal human anterior pituitary cell types and in pituitary tumors. J Clin Endocrinol Metab 87(4):1879–1884

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Lavandeira M, Saez C, Diaz-Rodriguez E, Perez-Romero S, Senra A, Dieguez C, Japon MA, Alvarez CV (2012) Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors. J Clin Endocrinol Metab 97(1):E80–E87

    Article  CAS  PubMed  Google Scholar 

  11. Mete O, Asa SL (2012) Clinicopathological correlations in pituitary adenomas. Brain Pathol 22(4):443–453. doi:10.1111/j.1750-3639.2012.00599.x

    Article  PubMed  Google Scholar 

  12. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM (2008) The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93(5):1526–1540. doi:10.1210/jc.2008-0125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dichek HL, Nieman LK, Oldfield EH, Pass HI, Malley JD, Cutler GB Jr (1994) A comparison of the standard high dose dexamethasone suppression test and the overnight 8-mg dexamethasone suppression test for the differential diagnosis of adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab 78(2):418–422

    CAS  PubMed  Google Scholar 

  14. Katznelson L, Atkinson JL, Cook DM, Ezzat SZ, Hamrahian AH, Miller KK (2011) American Association of Clinical Endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of acromegaly—2011 update. Endocr Pract 17(Suppl 4):1–44

    Article  PubMed  Google Scholar 

  15. Melmed S, Casanueva FF, Hoffman AR, Kleinberg DL, Montori VM, Schlechte JA, Wass JA (2011) Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(2):273–288. doi:10.1210/jc.2010-1692

    Article  CAS  PubMed  Google Scholar 

  16. Greenman Y, Stern N (2009) Non-functioning pituitary adenomas. Best Pract Res Clin Endocrinol Metab 23(5):625–638

    Article  CAS  PubMed  Google Scholar 

  17. Asa SL (2011) Tumors of the pituitary gland, vol 15, 4 edn. AFIP Atlas of tumor pathology. American Registry of Pathology, Washington

  18. DeLellis RA, Lloyd RV, Heitz PU, Eng C (2004) 2004 World Health Organization classification of tumours: Tumours of endocrine organs. IARC, Lyons

    Google Scholar 

  19. Oliveira VC, Carrara RC, Simoes DL, Saggioro FP, Carlotti CG Jr, Covas DT, Neder L (2010) Sudan Black B treatment reduces autofluorescence and improves resolution of in situ hybridization specific fluorescent signals of brain sections. Histol Histopathol 25(8):1017–1024

    CAS  PubMed  Google Scholar 

  20. Lepore DA, Roeszler K, Wagner J, Ross SA, Bauer K, Thomas PQ (2005) Identification and enrichment of colony-forming cells from the adult murine pituitary. Exp Cell Res 308(1):166–176

    Article  CAS  PubMed  Google Scholar 

  21. Guerrero-Cazares H, Attenello FJ, Noiman L, Quinones-Hinojosa A (2012) Stem cells in gliomas. Handb Clin Neurol 104:63–73. doi:10.1016/B978-0-444-52138-5.00006-2

    Article  PubMed  Google Scholar 

  22. Hsu W, Mohyeldin A, Shah SR, Gokaslan ZL, Quinones-Hinojosa A (2012) Role of cancer stem cells in spine tumors: review of current literature. Neurosurgery 71(1):117–125. doi:10.1227/NEU.0b013e3182532e71

    Article  PubMed  Google Scholar 

  23. Chesler DA, Berger MS, Quinones-Hinojosa A (2012) The potential origin of glioblastoma initiating cells. Front Biosci (Schol Ed) 4:190–205

    Article  Google Scholar 

  24. Chen K, Huang YH, Chen JL (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. doi:10.1038/aps.2013.27

    Google Scholar 

  25. Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT (2009) Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 30(7):790–829. doi:10.1210/er.2009-0008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kordek R, Potemski P, Kusinska R, Pluciennik E, Bednarek A (2010) Basal keratin expression in breast cancer by quantification of mRNA and by immunohistochemistry. J Exp Clin Cancer Res 29:39. doi:10.1186/1756-9966-29-39

    Article  PubMed Central  PubMed  Google Scholar 

  27. Nordengren J, Casslen B, Gustavsson B, Einarsdottir M, Willen R (1998) Discordant expression of mRNA and protein for urokinase and tissue plasminogen activators (u-PA, t-PA) in endometrial carcinoma. Int J Cancer 79(2):195–201

    Article  CAS  PubMed  Google Scholar 

  28. Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, Beer DG (2002) Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 1(4):304–313

    Article  CAS  PubMed  Google Scholar 

  29. Pascal LE, True LD, Campbell DS, Deutsch EW, Risk M, Coleman IM, Eichner LJ, Nelson PS, Liu AY (2008) Correlation of mRNA and protein levels: cell type-specific gene expression of cluster designation antigens in the prostate. BMC Genom 9:246. doi:10.1186/1471-2164-9-246

    Article  Google Scholar 

  30. Osamura RY, Kajiya H, Takei M, Egashira N, Tobita M, Takekoshi S, Teramoto A (2008) Pathology of the human pituitary adenomas. Histochem Cell Biol 130(3):495–507. doi:10.1007/s00418-008-0472-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Asa SL, Ezzat S (1998) The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 19(6):798–827

    CAS  PubMed  Google Scholar 

  32. Pulichino AM, Vallette-Kasic S, Tsai JP, Couture C, Gauthier Y, Drouin J (2003) Tpit determines alternate fates during pituitary cell differentiation. Genes Dev 17(6):738–747. doi:10.1101/gad.1065703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Drouin J (2012) Pituitary development. In: Melmed S (ed) The pituitary. Academic Press, London

    Google Scholar 

  34. Nolan LA, Levy A (2006) A population of non-luteinising hormone/non-adrenocorticotrophic hormone-positive cells in the male rat anterior pituitary responds mitotically to both gonadectomy and adrenalectomy. J Neuroendocrinol 18(9):655–661. doi:10.1111/j.1365-2826.2006.01459.x

    Article  CAS  PubMed  Google Scholar 

  35. Vankelecom H, Chen J (2013) Pituitary stem cells: Where do we stand? Mol Cell Endocrinol. doi:10.1016/j.mce.2013.08.018

    PubMed  Google Scholar 

  36. Dubois PM, el Amraoui A, Heritier AG (1997) Development and differentiation of pituitary cells. Microsc Res Tech 39(2):98–113. doi:10.1002/(SICI)1097-0029(19971015)39:2<98:AID-JEMT2>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  37. Mollard P, Hodson DJ, Lafont C, Rizzoti K, Drouin J (2012) A tridimensional view of pituitary development and function. Trends Endocrinol Metab 23(6):261–269. doi:10.1016/j.tem.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  38. Cooper O, Ben-Shlomo A, Bonert V, Bannykh S, Mirocha J, Melmed S (2010) Silent corticogonadotroph adenomas: clinical and cellular characteristics and long-term outcomes. Horm Cancer 1(2):80–92. doi:10.1007/s12672-010-0014-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Mr. Moses Chappell in the Department of Pathology for his assistance in obtaining pituitary autopsy specimens, and Ms. Leslie Reynolds in the Department of Pathology for her assistance in obtaining pituitary tumor slides. This work was supported by NIH T32 Grant #5T32DK007751-15 (NM) and NIH R01 NS070024 (AQH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nestoras Mathioudakis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathioudakis, N., Sundaresh, R., Larsen, A. et al. Expression of the pituitary stem/progenitor marker GFRα2 in human pituitary adenomas and normal pituitary. Pituitary 18, 31–41 (2015). https://doi.org/10.1007/s11102-014-0553-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-014-0553-1

Keywords

Navigation